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ABSTRACT  

This study describes the prediction of heart disease using ensemble classifiers with parameter optimization. 

As input, a public dataset was taken from UCI machine learning repository, which refers to the dataset at 

UCI Machine learning. The dataset consists of 13 variables that are considered to influence heart disease. 

Particle swarm optimization (PSO) was used for feature selection and principal component analysis (PCA) 

for feature extraction to reduce the features' dimensions. The application of parameter optimization on 

several machine learning methods such as SVM (Radial Basis Function), Deep learning, and Ensemble 

Classifier (bagging and boosting) to get the highest accuracy comparison. The results of this study using 

PSO dimensionality reduction in the public dataset of heart disease resulted in the slightest accuracy 

compared to PCA. In contrast, the highest accuracy was obtained from optimizing Deep Learning 

parameters with an accuracy of 84.47% and optimization of SVM RBF parameters with an accuracy of 

83.56%. The highest accuracy in the ensemble classifier using bagging on SVM of 83.51%, with a difference 

of 0.5% from SVM without using bagging. 

Keywords: Heart Disease, Machine  Learning, Dimensionality Reduction, Parameter Optimization, 

Ensemble Classifier 

 

1. Introduction  

Heart disease is one of the diseases with the highest risk of death. According to data from 

the World Health Organization (WHO), in 2012 showed, 17.5 million people, or 31% of the 

world's population, died from heart disease (Al-Mawali, 2015). According to 2018 data, the age-

adjusted cardiovascular disease (CVD) death rate in the United States was 217.1 per 100,000. 
Every 36 seconds, a CVD-related death occurs. In the US, a stroke victim dies every three minutes 

and 33 seconds. Based on data from 2018, 405 people die from a stroke daily (Virani et al., 2021). 

However, it is anticipated that advances in the upcoming year will combine with other important 

risk factors, including hypertension, cholesterol, and diabetes mellitus, to become a significant 

risk factor (Farkouh et al., 2013). Because of this, efforts are needed to improve the prevention of 
heart disease, such as consulting a cardiologist in carrying out medical actions and maintaining a 

healthy body (Winnige et al., 2021). However, in reality, people are reluctant to carry out regular 

heart health checks due to a lack of public awareness of the importance of health. This is an 

obstacle to the early detection of heart disease in the community (Nardin et al., 2020). 

The rapid development of technology using machine learning (ML) to solve society's 

problems has become very important, especially those related to medical informatics or 
biomedical computing and predicting heart disease (Ahmad & Polat, 2023; Nagavelli et al., 2022). 

Research related to heart disease can generally be divided into two. The first is biological signal 

processing to detect heart disease, and the second is data mining related to variables that trigger 

heart disease. Research mainly involves electrocardiogram signals processing for the detection of 

heart disease (Cheng et al., 2020; Hadiyoso & Rizal, 2017; Pestana et al., 2020) or processing 
heart sounds (Rizal & Suratman, 2020; Li et al., 2022; Zeinali & Niaki, 2022). Heart imaging 

techniques through echocardiography are also an alternative for the detection of heart disease 

(Liastuti et al., 2022; Mabrouk et al., 2016). Another imaging technique for analyzing blood 

vessels related to heart disease is angiography imaging (Khan Mamun & Elfouly, 2023). The 

photoplethysmogram (PPG) analysis method also has the potential to detect heart failure (Ave et 

al., 2015; Fahoum et al., 2023). The second category tends to predict heart disease based on 
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specific parameters such as complaints, lifestyle, or the results of a person's physical examination 

(Sharma & Parmar, 2020; Hossain et al., 2023; Bharti et al., 2021). Even the prediction of 
cardiovascular disease can also be performed by analyzing mental illness (Cunningham et al., 

2019). The advantage of this method is that it can predict before heart disease occurs. 

Methods for predicting or detecting heart disease by considering the variables of 

psychological examination, blood, age, and gender have been reported in several studies. 

However, there is still an opportunity to improve accuracy and reduce the variables used in 

predictions. Therefore, in this research proposes a feature dimension reduction method using 
principal component analysis (PCA) and particle swarm optimization (PSO), which will be 

combined with parameter optimization in machine learning (SVM, deep learning, Ensemble 

Classifier bagging, and bosting). It is thought that this combination of methods can improve 

detection accuracy even though feature attributes are reduced. This study aims to find a machine 

learning model with the highest accuracy by testing the dimensionality reduction algorithm. 
 

2. Research Methods 

This study used rapid miner tools to carry out the data mining process. Rapid miner was 

chosen because it has many data mining modeling and visualization features that are easy to read. 

In this research, Rapid Miner supports the normalization process, parameter optimization and 

ensemble classifier. The rapid miner process is divided into two main functions: without using 
dimensionality reduction in the application of machine learning methods and using 

dimensionality reduction in the application of machine learning methods. The dimensionality 

reduction testing process is needed to see that some features that are not required or have the most 

negligible weight can be reduced (Thrun et al., 2023; Vachharajani & Pandya, 2022). The 

following is the software and hardware used in this study: 
Software  

 Operating System Windows 11 64bit BIOS F.70 

 Rapid miner 9.1 

 Microsoft Office 2013 

Hardware 

 PC HP 245 G-7 

 Processor : AMD Ryzen 5 3500 U up to 2.1GHz 

 VGA : Radeon Vega Mobile  

 RAM : DDR-3 8GB 

The first step is to input the dataset, which is then normalized. Furthermore, whether the 

data that has been normalized is carried out or not, dimensionality reduction is carried out with 
PSO or PCA to test the level of accuracy produced. Then each data was tested for accuracy using 

SVM RBF parameter optimization, deep learning, and ensemble classifier (bagging and 

boosting). Figure 1 shows the flowchart for the proposed model. While Figure 2 shows the 

implementation of the proposed model. 

 

2.1 Dataset 
The research data use sources from the Kaggle public dataset, the UCI Machine Learning 

Repository. The data used is an open access dataset, some researchers have used it (Moturi et al., 

2020; Sharma & Parmar, 2020). The Cleveland Heart Disease dataset is used in this work which 

is extracted from the UCI repository. Totally 14 attributes are used in the diagnosis process and 

303 data instances. (details are shown in Table 1) with 303 data instances. Dataset processing 
starts from taking the raw data in UCI Machine Learning with the CSV extension and then 

converting it to Excel to simplify the import process into Rapid Miner. The "target" attribute in 

the form of a nominal 0-1 will be converted into "yes" and "no". The data that has been imported 

(read excel) will be set to the target role and the target role becomes the label. 

 

2.2 Dimensionality Reduction 
This study compares two types of dimensional reduction methods, PCA and PSO. The 

orthogonal basis of the data can be converted into a lower-dimensional subspace using the 

Principal Components Analysis (PCA) method (Yao et al., 2012). It is possible to reduce the 
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number of features needed for efficient data representation. By creating a data distribution model 

in the modified space, this method can reduce the properties of finite variables (Pimentel et al., 
2014). 

The Particle Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart in 

1995 was adapted from the foraging behaviour of birds and fish (particles) (Miraswan & 

Maulidevi, 2016; Zhenyu Meng et al., 2022). All these particles will move in space (optimal) at 

a certain speed and continue to change each particle in the search space indicated for the search 

until it reaches the destination (Jamian et al., 2014). 

 

Fig. 1. Flowchart For The Proposed Model  

 

 

Fig. 2. The Model 
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Table 1 - Variables And Type Of Data 

No Variable Type Values 

1. Age Integer 29-77 year 

2. Sex Binominal 0 (female); 1 (male) 

3. Chest paint Integer 1 (Typical angina);  
2 (Atypical angina);  

3 (Non angina);  

4 (Asymptotic) 
4. Blood pressure Integer 80-200 mmHg 

5. Cholesterol Integer 85-603 md/dl 

6. Blood glucose level Binominal 0 (<=120mg/dl);  
1 (>120mg/dl) 

7. Electrocardiography Integer 0 (normal);  

1 (ST-T problem);  
2 (Ventricle hypertrophy) 

8. Heart rate  Integer 60-202 bpm 

9. Angina induction Binominal 0 (No);  
1 (Yes) 

10. Old peak Real 0 - 6.2  
11. Slope Binominal 1 (up);  

2 (flat);  

3 (down) 
12. Number of major blood vessel Integer 0 - 3 

13. Thallium defect Binominal 3 (Normal);  

6 (fixed defect);  
7 (reversible defect) 

PSO places simple things known as particles in the search space of a certain problem or 

function. At their present location, the particles subsequently form a fitness function. By taking 

into account a particular component of the past of the optimal position of one or more swarm 

members with some random behavior, each particle can decide movement in the search space. 
When every particle is present, the subsequent iteration starts (Miraswan & Maulidevi, 2016). A 

three-dimensional vector D that represents the size of the search space and is connected to the 

following values characterizes each member of the swarm as follows: 

1. Actual position, xi 

2. Previous best position, pi 
3. Particle velocity, vi 

The actual position (xi) can be seen as a point in the search space. The present position is 

regarded as a solution to this problem in each iteration of the algorithm. If the place receives the 

highest fitness score, the coordinates are stored in the pi vector. The best overall results can be 

made public in a variable called Pg for comparison with the outcomes of the following iteration. 

The objective is to remember the best location after recording it (Jamian et al., 2014). In this 
study, PSO was used to generate three characteristics which mentioned above. 

The following are the general steps in the PSO process in Data Mining: 

1. Particle Population Initialization: The first step is to initialize the particle population. Each 

particle represents a potential solution in the search space, which may be a set of model 

parameters or a set of relevant features 
2. Particle Quality Assessment: Each particle is evaluated for its quality in achieving 

optimization goals. 

3. Determination of the Best Particle (Pbest): Each particle stores information about its own best 

position (Pbest) based on its quality assessment 

4. Determination of the Global Particle Best (Gbest): In addition to storing Pbest, PSO also 

searches for the best solution found by all the particles in the population. 
5. Particle Position Update: Each particle updates its position based on personal experience 

(Pbest) and collective experience (Gbest). This process describes how particles move in search 

of a better solution. 

6. Evaluation and Criteria: PSO iteration continues with particle position updates. Evaluation 

continues, and stopping criteria are applied. The stopping criteria can be the number of 
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iterations that have been performed, the accuracy reaching a certain threshold, or an 

insignificant improvement in quality. 
7. Optimal Solution: After the iteration is complete, the solution represented by the best Gbest or 

Pbest is considered the optimal or best solution found by the PSO algorithm. 

 

2.3 Classifiers 

2.3.1 Support Vector Machine 

SVM is a learning system used in the hypothesis of linear functions in high-dimensional 
feature space; the computer will be trained with an algorithm based on optimization theory with 

statistical learning theory (Srivastava & Bhambhu, 2010). SVM can work on non-linear data by 

using a kernel approach to the initial features of the data set (Awad & Khanna, 2015). Kernel 

functions map lower dimensions to higher dimensions (Abbaszadeh et al., 2019). In this study, 

the RBF kernel concept or Radial Basic Function is used in the classification process to get better 
accuracy with the formula: 

𝐾 = (𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖2

2𝜎2
)
 

 

𝑥𝑖  and 𝑥𝑗  are pairs of two training data.  𝜎2  > 0 is a constant. The kernel function must use dot 

product substitution in the feature space, which is very dependent on this kernel function in 
determining the new features produced. 

 

2.3.2 Deep Learning 

Deep learning is an artificial neural network algorithm that uses data as input and processes 

it with a hidden layer. Furthermore, a non-linear transformation of the input data is carried out to 

calculate the output value (Li et al., 2019). 
This study uses parameter optimization (learning rate) with a min value of 0.01, max 1.0, 

steps 10, and uses GPU utilization in processing so that the data computing process can take place 

faster than using CPU and RAM alone. 

 

2.3.3 Ensemble Classifier 
Ensemble classifier is a data-level approach aimed at improving class balance (Liu et al., 

2022). The strategy using the ensemble algorithm aims to enhance the algorithm without altering 

the data. The data level approach and the algorithm level approach are two possible trajectories 

(Murugananthan & Durairaj, 2019). Boosting and bagging are two common ensemble algorithms 

(Jafarzadeh et al., 2021). An algorithm with better classification performance is AdaBoost. 

Bagging is a straightforward but efficient ensemble method that has been utilized in numerous 
real-world applications to improve the accuracy of classification algorithms. Following are the 

general steps in how an ensemble classifier works: 

1. Creating Base Learner Models: The first step is to build a number of different base models 

(base learners). These models can come from various machine learning algorithms such as 

Decision Trees, Random Forests, Logistic Regression, Support Vector Machines, Neural 
Networks, and others. 

2. Base Learner Model Training: Each base model is trained on the same training data. These 

models generate individual predictions based on the characteristics of the data and the rules 

they learn during training 

3. Prediction Combination: The results of the base models are combined to produce an ensemble 

prediction. Combining methods can vary, but the most common methods are through majority 
voting (bagging), adding weights (boosting), or selecting predictions from the model that is 

considered the best (stacking). 

4. Evaluation and Accuracy: Ensemble predictions are evaluated on different test data to measure 

their performance. 

The working principle of the ensemble classifier is based on the assumption that various 
basic models have different strengths and weaknesses. By combining predictions from these 

various models, the weaknesses of one model can be offset by the strengths of the other models, 

overall resulting in more accurate and stable predictions (Rokach, 2010). 
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3. Results and Discussions  

The data was first reduced in dimensions using PSO or PCA in this study. In the next stage, 
classification is carried out using SVM and DL. Then the SVM and DL were optimized using 

bagging and boosting methods. These results are then compared with the accuracy without the 

dimension reduction process. 
Table 2 - Accuracy (%) using PSO 

Algorithm Ensemble Classifier 

Bagging Boosting 

SVM (RBF) DL SVM DL SVM DL 

76.32 76.54 76.25 67.66 72.61 74.22 

 
Table 3 - Accuracy (%) using PCA 

Algorithm Ensemble Classifier 

Bagging Boosting 

SVM (RBF) DL SVM DL SVM DL 

84.20 84.18 83.22 82.54 82.76 83.13 

From the table above, we can see that the use of feature extraction can increase the 
classification accuracy quite significantly. The highest accuracy results were obtained using SVM 

parameter optimization (RBF) with 84.20%. For the ensemble classifier, it can be seen that the 

accuracy difference is quite far from PSO to PCA, which has increased quite a lot. Next, we will 

classify without using dimensional reduction or all of the existing input variables listed in Table 

4. 
Table 4 - Accuracy (%) Without Dimension Reduction 

ML &  

Parameters optimization 

Ensemble Classifier 

Bagging Boosting 

SVM (RBF) DL SVM DL SVM DL 

83.56 84.47 83.51 82.51 83.17 81.22 

 
Table 5 - Optimization parameters 

Algorithm Parameter  Value 

SVM (RBF) C and Gamma Min: 0.01 
Max: 1 

Steps: 10 

Scale: linear 

Deep learning Gamma Min: 0.01 

Max: 1 
Steps: 10 

Scale: linear 

Suppose, viewed more specifically, using a small dataset (13 input variables and 303 

instances) results in significant accuracy. If the dataset has more input variables and more 

instances, the accuracy can be higher. The exciting thing is that the highest accuracy results 
obtained from deep learning parameter optimization of 84.47% with a learning rate of 0.1 can 

beat the accuracy of SVM parameter optimization (RBF).  

From the results obtained, the reduction of the dimension of the feature does not necessarily 

increase the accuracy of the classification. For feature reduction using PSO, the accuracy is much 

lower than PCA. This is because the optimization, in general, does not always produce the 
maximum value but only improves performance. Meanwhile, classification without a dimension 

reduction process for some cases increases accuracy; this is understandable because the initial 

characteristics will provide complete information on the data. Meanwhile, feature reduction may 

eliminate important information for classification. 

The classifier ensemble process generally does not produce higher accuracy than the 

parameter optimization process. This is because the learning algorithm is used without 
considering the value of the kernels in the algorithm. This causes a decrease in the accuracy value 

than using parameter optimization. In the parameter optimization process, trials are conducted to 

find the kernel value which has the smallest Root Mean Square Error (RMSE) value to be used 

as a reference for the use of kernel values such as SVM, which has the disadvantage of being 

difficult to determine the optimal parameter optimization value so that parameter optimization 
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tests are carried out on the SVM kernel (dot, RBF, polynomial). Jung et al. (Hojin Nam, Minseo 

Rhee, Jeung-Sun Lee, 2021) used the same dataset as this study.  
Another study on feature analysis in chronic heart disease using the same dataset in this 

study was conducted by Bialy et al. (El-Bialy et al., 2015). The difference in this research is using 

the C4.5 Tree algorithm by grouping the process to be compared with other data, then the data 

with the highest similarity will be grouped into one part. The results of this study have a 

classification accuracy of 78.06%, which is greater than the average classification accuracy using 

a separate dataset of 75.48%. The results of this study were compared with (El-Bialy et al., 2015) 
using the same dataset. It was found that the value of increasing accuracy by optimizing 

parameters with the ensemble classifier SVM (Baging and bosting) and Deep Learning (83.34% 

and 84.47%) was compared. without using parameter optimization (76.30% and 75.48). 

Optimizing ensemble classifier parameters has the potential to be explored in further research. 

From the results of the performance test of the proposed method, it can be seen that the parameter 
optimization using DL increases the accuracy, although it is not significant. Meanwhile, 

dimension reduction in features and parameter optimization cannot significantly increase 

accuracy. The highest accuracy is achieved using DL with parameter optimization without feature 

reduction. An ensemble classifier cannot produce higher accuracy because its parameters are not 

optimized. Exploring opportunities are still open to achieve higher accuracy with better parameter 

optimization in the proposed method. 
 

4. Conclusion  

In this study, a combination of dimensional reduction and optimization of classifier 

methods is proposed to predict heart disease. PCA and PSO are used in dimension reduction, 

while the classifiers used are SVM (Radial Basis Function), Deep learning, and Ensemble 
Classifier (bagging and boosting). The test results show that the highest level of accuracy is found 

in deep learning parameter optimization with an accuracy value of 84.47% with a difference of 

0.29% on PCA. The ensemble classifier is still below the highest accuracy, with an accuracy value 

of 83.17% on boosting SVM. This occurs because the use of ensemble classifiers (baging and 

bosting) is suitable for certain data characteristics such as data that is large enough to produce a 

significant increase in better accuracy. 
The implications of research on clinical health applications can support doctors in carrying 

out early detection using parameters that have been observed, It is hoped that this research can be 

a reference for further study in predicting heart disease so that it can detect the risk of heart disease 

early. Suggestions from the further analysis can be made by increasing the number of input 

variables and instances so that accuracy can increase. The use of other algorithms can also be 
done in further research, such as KNN, Naïve Bayes, Decision Tree, etc. The use of parameter 

optimization is also needed in testing the accuracy of each machine learning method. 
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	This study describes the prediction of heart disease using ensemble classifiers with parameter optimization. As input, a public dataset was taken from UCI machine learning repository, which refers to the dataset at UCI Machine learning. The dataset co...
	Keywords: Heart Disease, Machine  Learning, Dimensionality Reduction, Parameter Optimization, Ensemble Classifier
	1. Introduction
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	Methods for predicting or detecting heart disease by considering the variables of psychological examination, blood, age, and gender have been reported in several studies. However, there is still an opportunity to improve accuracy and reduce the variab...
	2. Research Methods
	This study used rapid miner tools to carry out the data mining process. Rapid miner was chosen because it has many data mining modeling and visualization features that are easy to read. In this research, Rapid Miner supports the normalization process,...
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	 Operating System Windows 11 64bit BIOS F.70
	 Rapid miner 9.1
	 Microsoft Office 2013
	Hardware
	 PC HP 245 G-7
	 Processor : AMD Ryzen 5 3500 U up to 2.1GHz
	 VGA : Radeon Vega Mobile
	 RAM : DDR-3 8GB
	The first step is to input the dataset, which is then normalized. Furthermore, whether the data that has been normalized is carried out or not, dimensionality reduction is carried out with PSO or PCA to test the level of accuracy produced. Then each d...
	2.1 Dataset
	The research data use sources from the Kaggle public dataset, the UCI Machine Learning Repository. The data used is an open access dataset, some researchers have used it (Moturi et al., 2020; Sharma & Parmar, 2020). The Cleveland Heart Disease dataset...
	2.2 Dimensionality Reduction
	This study compares two types of dimensional reduction methods, PCA and PSO. The orthogonal basis of the data can be converted into a lower-dimensional subspace using the Principal Components Analysis (PCA) method (Yao et al., 2012). It is possible to...
	The Particle Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart in 1995 was adapted from the foraging behaviour of birds and fish (particles) (Miraswan & Maulidevi, 2016; Zhenyu Meng et al., 2022). All these particles will move in spa...
	Fig. 1. Flowchart For The Proposed Model
	Fig. 2. The Model
	Table 1 - Variables And Type Of Data
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	3. Particle velocity, vi
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	6. Evaluation and Criteria: PSO iteration continues with particle position updates. Evaluation continues, and stopping criteria are applied. The stopping criteria can be the number of iterations that have been performed, the accuracy reaching a certai...
	7. Optimal Solution: After the iteration is complete, the solution represented by the best Gbest or Pbest is considered the optimal or best solution found by the PSO algorithm.
	2.3 Classifiers
	2.3.1 Support Vector Machine
	SVM is a learning system used in the hypothesis of linear functions in high-dimensional feature space; the computer will be trained with an algorithm based on optimization theory with statistical learning theory (Srivastava & Bhambhu, 2010). SVM can w...
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	,𝑥-𝑖. and ,𝑥-𝑗. are pairs of two training data. , 𝜎-2.  > 0 is a constant. The kernel function must use dot product substitution in the feature space, which is very dependent on this kernel function in determining the new features produced.
	2.3.2 Deep Learning
	Deep learning is an artificial neural network algorithm that uses data as input and processes it with a hidden layer. Furthermore, a non-linear transformation of the input data is carried out to calculate the output value (Li et al., 2019).
	This study uses parameter optimization (learning rate) with a min value of 0.01, max 1.0, steps 10, and uses GPU utilization in processing so that the data computing process can take place faster than using CPU and RAM alone.
	2.3.3 Ensemble Classifier
	Ensemble classifier is a data-level approach aimed at improving class balance (Liu et al., 2022). The strategy using the ensemble algorithm aims to enhance the algorithm without altering the data. The data level approach and the algorithm level approa...
	1. Creating Base Learner Models: The first step is to build a number of different base models (base learners). These models can come from various machine learning algorithms such as Decision Trees, Random Forests, Logistic Regression, Support Vector M...
	2. Base Learner Model Training: Each base model is trained on the same training data. These models generate individual predictions based on the characteristics of the data and the rules they learn during training
	3. Prediction Combination: The results of the base models are combined to produce an ensemble prediction. Combining methods can vary, but the most common methods are through majority voting (bagging), adding weights (boosting), or selecting prediction...
	4. Evaluation and Accuracy: Ensemble predictions are evaluated on different test data to measure their performance.
	The working principle of the ensemble classifier is based on the assumption that various basic models have different strengths and weaknesses. By combining predictions from these various models, the weaknesses of one model can be offset by the strengt...
	3. Results and Discussions
	The data was first reduced in dimensions using PSO or PCA in this study. In the next stage, classification is carried out using SVM and DL. Then the SVM and DL were optimized using bagging and boosting methods. These results are then compared with the...
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	From the table above, we can see that the use of feature extraction can increase the classification accuracy quite significantly. The highest accuracy results were obtained using SVM parameter optimization (RBF) with 84.20%. For the ensemble classifie...
	Table 4 - Accuracy (%) Without Dimension Reduction
	Table 5 - Optimization parameters
	Suppose, viewed more specifically, using a small dataset (13 input variables and 303 instances) results in significant accuracy. If the dataset has more input variables and more instances, the accuracy can be higher. The exciting thing is that the hig...
	From the results obtained, the reduction of the dimension of the feature does not necessarily increase the accuracy of the classification. For feature reduction using PSO, the accuracy is much lower than PCA. This is because the optimization, in gener...
	The classifier ensemble process generally does not produce higher accuracy than the parameter optimization process. This is because the learning algorithm is used without considering the value of the kernels in the algorithm. This causes a decrease in...
	Another study on feature analysis in chronic heart disease using the same dataset in this study was conducted by Bialy et al. (El-Bialy et al., 2015). The difference in this research is using the C4.5 Tree algorithm by grouping the process to be compa...
	From the results of the performance test of the proposed method, it can be seen that the parameter optimization using DL increases the accuracy, although it is not significant. Meanwhile, dimension reduction in features and parameter optimization cann...
	4. Conclusion
	In this study, a combination of dimensional reduction and optimization of classifier methods is proposed to predict heart disease. PCA and PSO are used in dimension reduction, while the classifiers used are SVM (Radial Basis Function), Deep learning, ...
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