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ABSTRACT 

Oral cancer presents a pressing global health concern, ranking as the eighth most prevalent cancer 

worldwide and leading to a significant number of deaths, particularly evident in India with an annual toll 

of around 130,000 lives lost to mouth cancer. The urgency for early detection is evident, as delays in disease 

identification due to clinical exams and biopsies by skilled doctors can hinder effective treatment and 

improved patient outcomes. This study addresses this critical need through the development of a system 

capable of recognizing disease-affected oral regions and accurately classifying various oral cancer 

disorders. The research leverages Deep Learning algorithms to detect and precisely localize affected areas 

within oral images, incorporating advanced feature extraction techniques, notably pattern-based features. 

The innovative Bee Pulse Couple Neural Network (BeePCNN) algorithm is employed for effective 

segmentation of the affected regions. To further enhance detection efficiency, a novel Fuzzy Genetic 

Particle Swarm Convolutional Neural Network (FGPSOCNN) is introduced, reducing the computational 

complexity while preserving a high accuracy level. The proposed system undergoes rigorous evaluation 

using real-time MRI images gathered from Arthi Scan Hospital. The experimental results convincingly 

demonstrate the superiority of the FGPSOCNN model compared to existing oral cancer detection methods. 

This comprehensive study not only addresses the crucial need for early oral cancer detection but also 

introduces an innovative approach that significantly improves efficiency without compromising accuracy. 

The potential impact of this research on oral cancer diagnosis is substantial, offering a promising solution 

to a critical global health challenge. 

Keywords: Oral cancer, Deep learning, BeePCNN, Fuzzy, Particle swarm optimization, FGPSOCNN. 

 

1. Introduction  
Oral cancer presents a significant global burden, both economically and in terms of clinical 

impact. Among the various forms of oral cancer, oral squamous cell carcinoma (OSCC) is the 

most common, accounting for about 90% of cases. (Ezhilarasan et al., 2022; Shamala et al., 2023; 

Zhou et al., 2023). OSCC originates from the squamous cells that line the oral cavity and is 

recognized for its aggressive behaviour, being prevalent among individuals with oral cancer. 
Fukumoto et al., (2022). Despite advancements in treatment, the 5-year survival rates for affected 

patients have remained stagnant due to delayed diagnosis. According to a report from the World 

Health Organization, the mortality rate for oral cancer within 5 years of diagnosis, considering all 

stages of diagnosis, stands at 45% (Mercadante et al., 2022). However, when the disease is 

identified early in its development, the survival rate improves significantly, ranging from 80% to 

90%. Detecting it early and taking timely action is crucial, as oral cancer can spread to distant 
areas, making effective treatment more challenging (Deshmukh et al., 2021). It is essential to be 

aware of the severity of oral cancer and its potential consequences. Regular screenings, 

particularly for high-risk individuals, along with maintaining good oral health habits, can play a 

crucial role in detecting oral cancer at an early stage, improving the chances of successful 

treatment and better outcomes (Abat et al., 2020; Khanaga et al., 2021; Ketabat et al., 2019). 
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In recent years, advancements in machine learning algorithms have shown promising 

results in various medical applications, including cancer detection. These algorithms have played 
a significant role in predicting OSCC biopsies, offering improved accuracy in classification and 

aiding in prognosis. (Rahman et al., 2022; Das et al., 2020; Rao et al., 2022). By leveraging data 

from diverse sources, such as patient medical records, imaging, and genetic profiles, machine-

learning models can assist clinicians in making more informed decisions, leading to better patient 

outcomes (Kirubabai et al., 2021; Bansal et al 2022; Huang et al., 2022). Also explores the 

importance of early oral cancer detection, the prevalence and characteristics of oral squamous cell 
carcinoma, and the growing role of machine learning algorithms in predicting OSCC biopsies. 

Bur et al., (2019). A comprehensive analysis of these factors, highlights the potential benefits of 

integrating machine learning techniques into oral cancer diagnosis and management, ultimately 

contributing to enhanced patient care and survival rates. Warin et al., (2021). Oral cancer affects 

various areas in the mouth and presents symptoms such as non-healing sores, lumps, difficulty 
chewing or speaking, and swollen jaw. Tobacco usage, alcohol intake, and HPV infection are all 

risk factors. The tumor stage is determined by the location, size, and involvement of lymph 

nodes(Chamoli et al., 2021; Capote-Moreno et al.,2020). 
Machine learning is an artificial intelligence technique that enables computer systems to 

learn from data without requiring explicit programming. It can be categorized into supervised and 

unsupervised learning (Panigrahi et al., 2022; Janiesch et al., 2021). In supervised learning, 
labelled data is used to make predictions, while unsupervised learning aims to identify patterns in 

unlabelled data. El-Hasnony et al., (2022). Classical machine learning models like Support Vector 

Machine (SVM) and Decision Tree (DT) are applied for the classification of oral cancer, aiding 

in diagnostic and predictive tasks. (Dixit et al., 2023; Parkavi et al., 2023). In cases where existing 

classification algorithms fail to produce satisfactory results, the development of novel approaches 
becomes necessary. The primary contributions of this paper can be summarized as follows, 

 Data collection, involving the gathering of real-time information from Arthi Scan Hospital, 

plays a pivotal role in enhancing the practical relevance of the system for oral cancer detection. 

 Utilizing the Bee Pulse Couple Neural Network (BeePCNN) method for segmentation 

demonstrates a novel and innovative approach to image analysis. 

 Incorporating FGPSOCNN for oral cancer detection underscores the application of a 

specialized and effective classification technique within the context of this critical medical 
concern. 

The paper is structured as follows, Section 2 discusses relevant contemporary literature, 

Section 3 provides a detailed description of the proposed architecture, Section 4 presents the 

experimental results and subsequent discussions, and Section 5 concludes the paper, offering 

insights into future research directions. 
 

2. Literature Review 

Bhandari et al., (2020) proposed a CNN architecture with a tailored loss function designed 

to minimize errors, reduce overfitting, and support multi-class classification. The derivation of 

the modified loss function involves a combination of the Mean Squared Error (MSE) rate with 
the cross-entropy loss function. The strategic use of the ReLU activation function within the 

convolutional layer augments the model's training capabilities, simultaneously mitigating the risk 

of data overfitting. However, it is essential to acknowledge the potential complexity introduced 

by the customized loss function, which may require careful parameter tuning and could prolong 

the training process, making it resource-intensive. Das et al., (2018) focused on automating the 

identification of clinically significant regions within histological images of oral tissue, 
particularly for the diagnosis of oral squamous cell carcinoma. Folmsbee et al., (2020) introduced 

active deep-learning techniques to enhance the training efficiency of convolutional neural 

networks for tissue classification in oral cavity cancer, demonstrating improvements in accuracy 

and performance. This approach made advancements in medical image analysis for cancer 

diagnosis.  
In Xu et al., (2019), the authors proposed a 3DCNN-based algorithm for the early diagnosis 

of oral cancer. The algorithm was trained on a dataset of 3D CT images of oral cancer patients. 
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The authors also used data augmentation to increase the size of the training dataset. This helped 

to improve the performance of the algorithm. The authors concluded that their algorithm is a 
promising approach for the early diagnosis of oral cancer, even if those features are not present 

in all the training data. The authors implemented a transfer learning approach in Amin et al., 

(2021), fine-tuning three pre-trained deep learning models individually (VGG16, InceptionV3, 

and ResNet50) and subsequently combining them for feature extraction. This concatenated model 

outperformed individual models, achieving high accuracy. In Musulin et al., (2021), the power of 

CNNs in tandem with a conditional random field model to achieve precise grading of oral OSCC 
and the segmentation of epithelial and stromal tissue. Their model was trained on an extensive 

dataset of histopathological images, annotated for both OSCC grading and tissue segmentation. 

Alhazmi et al., (2021) delved into the realm of AI and machine learning, aiming to predict the 

risk of oral cancer. Their work involved employing advanced computational models to assess an 

individual's vulnerability to this type of cancer, potentially enabling proactive preventive 
measures. Conversely, Chu et al., (2020) directed their attention toward the prognosis of treatment 

outcomes in oral cancer. Utilizing AI, their study sought to equip healthcare professionals with 

valuable insights into patients' likely responses to different treatment approaches, facilitating 

personalized therapeutic decision-making.  

Additionally, Welikala et al., (2020) introduced an automated deep learning-based system 

for detecting and classifying oral lesions. While these approaches hold promise, it's important to 
note that they come with high computational complexity, which may present practical challenges 

in real-world clinical applications. Myriam et al., (2023) introduced an innovative meta-heuristic 

algorithm for oral cancer detection, combining particle swarm optimization (PSO) and Al-Biruni 

earth radius optimization (BER) methods. This hybrid approach effectively initializes a deep 

belief network (DBN) with PSO and fine-tunes it using BER, achieving efficacy accuracy on a 
challenging dataset. However, the paper could benefit from a more extensive discussion of 

potential limitations, such as computational resource requirements, scalability, and robustness 

across diverse datasets. In Ariji et al., (2020) presented an approach using the Alexnet architecture 

for oral cancer detection from MRI images, achieving a notable 84.7% accuracy on a test set from 

oral cancer patients. The utilization of the DIGITS deep learning training system led to the 

creation of five learning models after 300 epochs. However, it is crucial to acknowledge the 
observed lower accuracy as a significant point of consideration. Jubiar et al., (2022) introduced 

the Light-Weight Deep Convolutional Neural Network (LWDCNN) for oral cancer image 

analysis, featuring efficiency and speed without compromising accuracy through transfer 

learning. Deif et al., (2022) employed a hybrid feature selection approach, combining statistical 

analysis, correlation coefficients, and a genetic algorithm to enhance the classification of 
colorectal cancer histology using SVM. Ghosh et al., (2022) developed a novel Deep-Reinforced 

Neural Network (DRNN) for oral cancer risk prediction, leveraging deep and reinforcement 

learning, and integrating cell images and cyto-spectroscopic data for improved predictive 

accuracy. 

Patibandla, S.K. et al., (2023) designed an oral cancer detection model using CNN. This 

method integrates an edge-based segmentation technique with labelled pixel extraction. While the 
approach holds the potential to improve image quality and enhance cancer detection accuracy, its 

complexity due to the combination of these techniques leads to longer processing times and 

increased resource demands, requiring careful optimization to strike a balance between accuracy 

and computational efficiency. In Wahid et al., (2022), the study introduces an automated approach 

for segmenting oropharyngeal cancer tumor volumes using MRI scan images. The Residual U-
net, a deep learning architecture, is employed to facilitate this segmentation process, while the 

Dice similarity coefficient serves as the key metric for evaluating the model's performance. The 

advantages of such automated segmentation include increased efficiency and reduced inter-

observer variability. However, it is important to note potential drawbacks, such as the model's 

reliance on large and diverse datasets for training and the challenge of interpreting the decisions 

made by complex deep learning models, which may lack transparency and require careful 
validation. 
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Building upon the insights from the literature analysis, the current study delves into the 

classification of oral MRI images. The study introduces novel variations and layers within the 
FGPSOCNN architecture. 

 

3. Research Methods 

The oral cancer detection process commences by collecting input MRI images, which then 

undergo a crucial pre-processing stage utilizing an Adaptive Bilateral Filter (ABF). This filter is 

a type of image enhancement technique that helps to reduce noise and preserve important 
structural details in the image, making it particularly useful for medical imaging. After pre-

processing, pattern-based features such as Local Optimal Orientated Pattern (LOOP) and LTP are 

extracted. After that, the patterns are subjected to a segmentation process. The Bee Pulse Couple 

Neural Network (BeePCNN) segmentation method is employed to separate the cancer-affected 

regions, which can help in isolating specific structures of interest within the image. The BeePCNN 
is a neural network-based approach that is designed to identify and delineate regions within 

images. Following the segmentation step, the segmented regions are then subjected to a 

classification process using the proposed FGPSOCNN method. This classification step is where 

the system determines whether the segmented regions are normal or abnormal. FGPSOCNN is a 

specialized type of CNN that considers not only the spatial organization of features in the image 

but also incorporates fuzzy logic principles and hyperparameters tuned by genetic PSO for 
handling uncertainties in the classification process. By combining these techniques, the system 

aims to achieve accurate identification of abnormal regions in the CT image, which is crucial for 

detecting potential health issues. This comprehensive approach depicted in Figure 1, involving 

pre-processing, segmentation, and classification, helps enhance the accuracy and reliability of the 

analysis, contributing to more effective medical imaging evaluation and diagnosis. 

 

Fig. 1. The Overall Design of The Proposed Oral Detection Model 

 

3.1. Dataset 

The oral cancer detection process begins with the acquisition of real-time MRI images from 

the Arthi Scan Hospital. MRI images obtained using a 3.0 Tesla MRI machine are known for their 

high image quality due to the stronger magnetic field. Storing these images in DICOM format 

(.dcm) is a standard practice in the medical field, as it allows for comprehensive information about 
the image and the patient to be stored together. This dataset consisting of a total of 1036samples 

that encompass cases involving the presence of oral cancer and normal case.  

 

3.2. Pre-processing 

Pre-processing enhances MRI image quality by reducing noise using Adaptive Bilateral 

Filter (ABF). The ABF is a sophisticated technique used in MRI image pre-processing. ABF not 
only reduces noise but also preserves edges and fine details by considering local image 

characteristics.  
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For an input image 𝐼(𝑎, 𝑏)  and a pixel location (𝑎, 𝑏)within the image, the filtered output 

𝐹𝑜𝑢𝑡(𝑎, 𝑏)within the defined neighbourhood pixel𝜑, using the ABF can be expressed as, 

𝐹𝑜𝑢𝑡(𝑎, 𝑏) =
1

𝜇
∑𝑊𝑠(|𝑎 − 𝑏|)𝑊𝑟(|𝐼𝑎 − 𝐼𝑏|)

𝑏∈𝜑

𝐼𝑎
 

Where,𝑊𝑠(|𝑎 − 𝑏|) is the spatial weight, dependent on the spatial distance between the 

central pixel 𝑎 and the neighboring pixel 𝑏, 𝑊𝑟(|𝐼𝑎 − 𝐼𝑏|)is the range weight, determined by the 

absolute difference between the intensity values of the central pixel 𝐼𝑎 and the neighboring pixel 

𝐼𝑏, and 𝜇 is the normalization factor defined below, 

𝜇 = ∑𝑊𝑠(|𝑎 − 𝑏|)𝑊𝑟(|𝐼𝑎 − 𝐼𝑏|)

𝑏∈𝜑

 

 

Upon the completion of the pre-processing stage, the subsequent step in the pipeline 

involves feature extraction. 
 

3.3. Feature Extraction 

Feature extraction involves identifying and capturing meaningful information from the pre-

processed images that can be used to distinguish between different classes or categories, such as 

oral cancer and normal cases. 
 

3.3.1. Local Optimal Orientated Pattern (LOOP) 

The LOOP is combines the strengths of Local Directional Pattern (LDP) and Local Binary 

Pattern (LBP) while overcoming their respective issues. LBP is a well-known descriptor that 

captures local intensity variation patterns in an image and demonstrates good discrimination 

characteristics. On the other hand, LDP is an improved local pattern descriptor that incorporates 
a directional component using Kirsch compass kernels, making it less susceptible to noise 

compared to traditional LBP. However, both LDP and LBP suffer from a major issue: the 

randomized sequence of binarization weights, which introduces dependency on orientation. To 

address this problem, the LOOP method incorporates additional information by assigning 

binarization weights to neighboring pixels based on the strength of Kirsch output in the direction 
of each pixel. The enhanced LDP descriptor in LOOP effectively introduces a directional 

component with Kirsch compass kernels, making it less vulnerable to noise compared to the 

original LBP operator. This adaptability and scale-independence make it a potential candidate for 

improving oral cancer detection algorithms. The LOOP feature for the pixel (𝑟1, 𝑟2) is defines as, 

𝐹𝑙𝑜𝑜𝑝(𝑟1, 𝑟2) = ∑𝑘(𝑧𝑣 − 𝑧0)

𝐴−1

𝑣=0

∗ 2𝑤𝑣
 

Where 𝑧0is the pixel intensity of an image at
(𝑟1, 𝑟 2 )

, an exponential value, denoted as 𝑤𝑣, 

is assigned to each of these neighboring pixels, taking a digit between 0 and A-1,and 𝑧 𝑣  

represents the Kirsch masks are oriented in the direction of the neighboring pixel intensity 

 (𝑣 = 1, 2, . . . , 𝐴 − 1), providing a measure of the intensity variation strength. 

𝑧(𝑟) = {
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 

The main formulation of the LOOP descriptor encodes rotation invariance, allowing it to handle 

varying orientations in an image. 

 

3.3.2. Local Ternary Pattern (LTP) 

LTP is an extension of the LBP operator and the basic idea of LTP is to compare the central 
pixel value with its neighbors in a circular region around it by thresholding, and then encode the 

comparisons into a ternary code. The LTP operator is formed by combining the coded 
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representations of two distinct patterns: the upper pattern and the lower pattern. LTP is designed 

to capture texture information and helps to detect the oral cancer-affected region. The LTP 
operator can be represented with the following equation: 

𝐹𝑙𝑡𝑝(𝑟1, 𝑟2) = ∑ 𝑘(𝑧𝑣 − 𝑧0)

𝐴−1

𝑣=0

∗ 3𝑣
 

𝑧(𝑟) = {

1,              𝑟 ≥ 𝛼
0,    𝛼 < 𝑟 < 𝛼
−1,            𝑟 < −𝛼

 

Where, 𝛼  denotes threshold value, and 3𝑣 represents the weight to emphasize the 

importance of certain positions within the neighborhood.  

 

3.4. Segmentation 

Upon obtaining pattern images, the following stage involves segmentation, wherein the 

goal is to precisely delineate cancer-affected areas by outlining their boundaries within the 

images. This accurate boundary identification holds significance for effective cancer diagnosis. 
 

3.4.1. Bee Pulse-Coupled Neural Network (BeePCNN) 

The BeePCNN segmentation method employs a Pulse-Coupled Neural Network (PCNN) 

framework, with hyperparameters fine-tuned using the Artificial Bee Colony (ABC) algorithm, 

to enhance the accuracy and effectiveness of the segmentation. Optimization problems are 
common across diverse domains, but classical methods face efficiency issues, especially with 

high dimensions. Heuristic approaches, such as the ABC algorithm, offer a powerful alternative. 

ABC, inspired by the social interactions of honeybees, has proven successful, particularly in 

handling NP-hard problems and searching for optimal hyperparameters in machine learning 

algorithms. This study focuses on leveraging ABC to significantly reduce tuning time for models. 

Hyperparameters tuning is carried out using the ABC algorithm is a promising approach to find 
optimal configurations for PCNN. The ABC algorithm's ability to handle complex optimization 

problems makes it wellsuited for the high-dimensional search space of hyperparameters. The 

BeePCNN architecture is shown in Figure 2. 

 

Fig. 2. Architecture of BeePCNN 

PCNN: The PCNN model originates from a configuration of pulse-coupled neurons 
arranged in a two-dimensional array. This model, often used for image segmentation, represents 

pixels as neurons within this array. When a neuron in the PCNN model undergoes firing, it triggers 

the simultaneous firing of all pixels within the same category. This phenomenon arises from the 

inherent neuron coupling present in the model. Leveraging this coupling behaviour, the PCNN 

model employs various techniques to process digital images. This approach capitalizes on the 

synchronized activation of pixels to accomplish image analysis tasks. By harnessing the 
interconnected nature of the neurons, the PCNN model demonstrates its effectiveness in dealing 

with digital imagery. The PCNN model comprises distinct subsystems with corresponding 

equations. The coupled connection subsystem is defined as, 

Φ𝑥𝑦(𝑙) = Κ𝑥𝑦 
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Where, Φ𝑥𝑦(𝑙)  and Κ𝑥𝑦 are denote the feedback input and external input excitation 

respectively. The input feeding subsystem, modulation, and dynamic threshold subsystems are 

expressed as, 

X𝑥𝑦(𝑙) =∑Φ𝑥𝑦,𝑖𝑗(𝑙)

𝑖,𝑗

Η𝑖𝑗(𝑙 − 1)
 

Y𝑥𝑦(𝑙) = Φ𝑥𝑦(𝑙) (
𝛿 ∗ X𝑥𝑦(𝑙) + 1)

 

Η𝑥𝑦(𝑙) = {
1, Y𝑥𝑦(𝑙) > 𝑀𝑥𝑦(𝑙 − 1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where, X𝑥𝑦(𝑙)  represents connect input for the model, Y𝑥𝑦(𝑙)  is internal activity term 

within the neural network, and Η𝑥𝑦(𝑙)  is pulse output value of the neural network, Φ𝑥𝑦,𝑖𝑗  is 

connection weight matrix between neurons. Dynamic threshold𝜃𝑥𝑦(𝑙) within the neural network 

is defined as, 

𝜃𝑥𝑦(𝑙) = 𝑒−𝛼𝑀 ∗ 𝑀𝑥𝑦(𝑙 − 1) + 𝑉𝑀 ∗ Η𝑥𝑦(𝑙) 

Where, 𝛿is connection coefficient, 𝛼 and𝑉𝑀are the amplitude constants and time decay 

constants of the dynamic threshold, respectively.  

Image segmentation focuses on neuron-triggered firing, either naturally or via neighbours. 

Neurons fire once per iteration, ensuring minimum threshold attenuation to enable firing chances. 

All neurons can fire when dynamic threshold reaches minimal attenuation. Neighbouring neuron 

firing estimates adjacent pixel gray levels, reflecting pixel value changes. Prior knowledge of 
neuron firing aids estimating defocused image region characteristics. PCNN neurons trigger 

neighbours through connection and feedback. In successive iterations, dynamic threshold decay 

leads to adjacent neuron firing. This process helps refine regional estimations in defocused 

images. The PCNN model interplay of subsystems and firing dynamics facilitate effective image 

analysis and segmentation. 

PCNN hyperparameter tuning using ABC: Initially, hyperparameters space is defined, this 

includes the range of values for each hyperparameters in PCNN. The search space for 

hyperparameters tuning involves the learning rate, momentum, hidden neurons, batch size, and 

epochs. After that initial solutions can be randomly generated within the defined hyperparameters 

search space. Generate a random population𝑄𝑖,𝑗for a variable space specified lower 𝐿𝐵𝑗  and upper 

𝑈𝐵𝑗bounds by adding a random offset between 0 and 1 times the range of the bounds.  

𝑄𝑖,𝑗 = 𝐿𝐵𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗) 

 

Next, Evaluate the fitness of each solution using the objective function in equation 

(13).This step determines how well each set of hyperparameters performs on the given task. In 

this study, the selected fitness function is the mean square error (MSE) of the model when 
evaluated on the training set. This can be represented as, 

𝐹𝑖𝑡 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 

Where, 𝑛  is the number of samples, 𝑦𝑖  represents the actual (observed) value for the 

𝑖𝑡ℎsample, and 𝑦�̂�represents the predicted value by the model for the 𝑖𝑡ℎsample. The employed 

bees update their solutions by making small perturbations to the existing hyperparameters. The 

updated solutions𝑉𝑖,𝑗  are evaluated for fitness is defined as, 
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𝑉𝑖,𝑗 = {
𝑄𝑖,𝑗 + 𝜁 ∗ (𝑄𝑖,𝑗 − 𝑄𝑘,𝑗), 𝑟𝑎𝑛𝑑 < 𝑀𝑟

𝑄𝑖,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒

 

Here, 𝑀𝑟is the modification rate. Onlooker bees select solutions based on their fitness, with 

better solutions having a higher probability of being chosen. These onlooker bees generate new 

solutions similarly to the employed bees. If a solution has not improved for a predefined number 

of iterations, it becomes a scout bee. The scout bee abandons its current solution and explores a 

new random solution within the search space. If a new solution found by an onlooker bee has 
better fitness than the solution it replaces in the population, the population is updated. The 

algorithm continues for a certain number of iterations or until a convergence criterion is met. By 

iteratively updating the population of solutions, ABC explores the hyperparameters search space, 

focusing regions and gradually converging toward optimal hyperparameters settings. 

 

3.5. Classification 

In this process, a segmented image of the oral cavity is analyzed using a classification 

model to determine whether it exhibits normal or abnormal characteristics related to oral cancer. 
These segmented images are then input into a trained classification model that has learned patterns 

from labelled data. The model output prediction helps identify potential abnormalities, aiding in 

early detection and decision-making for further medical evaluation if necessary. 
 

3.5.1. Proposed FGPSOCNN based classification 

The proposed classification approach involves utilizing a novel technique called 

FGPSOCNN, which likely stands for Fuzzy Genetic Particle Swarm Optimization Convolutional 

Neural Network. This hybrid methodology integrates the CNN, with fuzzy logic for improved 

performance in classification tasks. Fuzzy logic is used to handle uncertainty and imprecision in 
data. By incorporating fuzzy logic, the proposed method might be more robust to variations and 

uncertainties in the data, leading to better classification results.  Also, hyperparameters are tuned 

by Genetic PSO algorithm.  PSO is an optimization algorithm inspired by the collective behavior 

of swarms in nature. In the context of classification, PSO likely optimizes specific parameters or 

features to enhance the effectiveness of the subsequent classification process. Genetic Algorithms 
explore a broad solution space, aiming to find the global optimum rather than getting stuck in 

local optima. This characteristic is crucial for ensuring the classification model's parameters are 

finely tuned across various scenarios. PSO iteratively refines solutions within a search space to 

find optimal values. This hybrid approach showcases a multidisciplinary approach to address 

classification challenges in a more sophisticated manner. The schematic representation of the 

proposed FGPSOCNN model is depicted in Figure 3. 

 

Fig. 3. The proposed FGPSOCNN model 

 

3.5.2. Fuzzy Convolutional Neural Network (Fuzzy CNN) 

CNN have achieved impressive results in image classification tasks. However, when 

dealing with medical images, uncertainties and imprecisions arising from factors like varying 

lighting conditions, tissue appearance, and image quality can undermine classification accuracy. 
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To overcome these challenges, the incorporation of fuzzy logic into CNNs emerges as a viable 

solution. This integration allows for the effective management of uncertainties in the decision-
making process, offering a means to mitigate the impact of diverse uncertainties encountered in 

medical image analysis.  

 

Input Layer 

The input layer of the Fuzzy CNN receives segmented oral images and passes their pixel 

values to the network. It acts as a starting point, conveying the image information for further 
classification. The input layer of the Fuzzy CNN can be represented as: 

𝐼 = [𝑆𝑒 1 , 𝑆𝑒2, … . . 𝑆𝑒𝑖 , … . 𝑆𝑒𝑛],   (𝑁 = 1,2,3, … . . 𝑛)
 

Where 𝑁 denotes the total number of images, 𝐼the input vector containing pixel is values 

of the segmented oral image, and 𝑆𝑒 𝑖 represents the 𝑖𝑡ℎpixel value. 

  

Fuzzy layer  

When an image is input into the fuzzy layer, each pixel value is considered as an input 

value. These input values are then transformed using the predefined fuzzy membership functions 
Each pixel value is mapped to membership degrees across different categories based on 

these functions. The working of fuzzy layer is explained as follows. 

Fuzzy Membership Functions: Texture-based membership functions play a significant role 

in oral cancer detection using CNN. These functions are tailored to capture the texture 

characteristics of oral images, aiding in accurately classifying healthy and cancerous tissues. The 

texture-based membership functions based on Gaussian distributions with uncertain mean, 
uncertain standard deviation, and both uncertain mean and uncertain standard deviation can be 

defined as, 

𝜇𝑖𝑗(𝑥; 𝑢′ , 𝜎) = 𝛼𝑗
1

√2𝜋𝜎𝑗
exp {−

(𝑥𝑖 − 𝑢𝑗)
2

2𝜎𝑗
2

} , 𝑢𝑗 ∈ [𝑢𝑗
− , 𝑢𝑗

+]
 

 

𝜇𝑖𝑗(𝑥; 𝑢, 𝜎′) = 𝛼𝑗
1

√2𝜋𝜎𝑗
exp {−

(𝑥𝑖 − 𝑢𝑗)
2

2𝜎𝑗
2

} , 𝜎𝑗 ∈ [𝜎𝑗
−, 𝜎𝑗

+]
 

 

𝜇𝑖𝑗(𝑥; 𝑢′, 𝜎′) = 𝛼𝑗
1

√2𝜋𝜎𝑗
exp {−

(𝑥𝑖 − 𝑢𝑗)
2

2𝜎𝑗
2

} , 𝑢𝑗 ∈ [𝑢𝑗
−, 𝑢𝑗

+], 𝜎𝑗 ∈ [𝜎𝑗
−, 𝜎𝑗

+]
 

Where,𝑢′ and 𝜎′ denote mean and standard deviation of healthy tissue pixel.𝑢 𝑗
−  , 𝑢𝑗

+and𝜎𝑗
− 

, 𝜎𝑗
 

+are the left and the right pixel of the healthy pixel mean and standard deviation. These 

membership functions are specifically tailored to each tissue class, capturing their distinct textural 

attributes. The upper and lower membership functions of the interval type-2 fuzzy model for each 

class can be mathematically expressed as follows, 

𝜇𝑖𝑗
+ (𝑥) = {

𝜇𝑖𝑗(𝑥; 𝑢−, 𝜎)  ,              𝑥𝑖 < 𝑢𝑗
−

𝛼𝑗                               ,   𝑢𝑗
− < 𝑥𝑖 < 𝑢𝑗

+

𝜇𝑖𝑗(𝑥; 𝑢+, 𝜎)  ,              𝑥𝑖 > 𝑢𝑗
+

 

𝜇𝑖𝑗
+ (𝑥) =

{
 

 𝜇𝑖𝑗(𝑥; 𝑢−, 𝜎) , 𝑥𝑖 ≤
𝑢𝑗
− + 𝑢𝑗

+

2

𝜇𝑖𝑗(𝑥; 𝑢+, 𝜎), 𝑥𝑖 >
𝑢𝑗
− + 𝑢𝑗

+

2
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These Gaussian distribution formulations with uncertain mean, uncertain standard 

deviation, and both uncertain mean and uncertain standard deviation enable the modeling of 
uncertain and varying texture characteristics present in oral images, thus contributing to more 

robust and accurate oral cancer detection using a Fuzzy CNN approach. By integrating these 

texture-based membership functions into the network operations, the model becomes capable of 

handling the uncertainty inherent in oral image texture attributes. This enhanced capability 

enables the network to discern subtle textural differences between healthy and cancerous tissues 

Fuzzification Process: The fuzzification process assigns membership degrees to each pixel 
value based on the membership functions. This process is essentially a mapping of pixel values 

to membership degrees in different fuzzy sets. The membership degrees represent how much a 

pixel value belongs to a specific attribute category. 

Fuzzy Pixel Representation: After the fuzzification process, each pixel in the image is 

represented not by a single value but by a set of membership degrees corresponding to various 
fuzzy sets. This representation captures the uncertainty and vagueness associated with pixel 

attributes. 

 

Convolution layer 

The fuzzy pixel representation is then integrated into the convolutional layers. The 

convolutional layers apply convolution operations to the fuzzy pixel values, considering the 
membership degrees along with the convolutional filters. The convolutional layers function as 

feature extractors, responsible for learning feature representations from the corresponding input 

images. Within the convolutional layers, neurons are organized into feature maps, each containing 

a receptive field. These neurons are interconnected with the neighbourhoods of neurons in the 

preceding layer via a set of trainable weights referred to as the filter bank. Through the process of 
convolving the inputs with the learned weights, a novel feature map is generated. The convolved 

results then traverse the neurons within the feature map, each equipped with nonlinear activation 

functions and associated weights. These neurons maintain consistent weight conditions. Within 

the same convolutional layer, multiple feature maps are established, each composed of distinct 

weights for extraction at various locations. In general, the calculation of the 𝑣𝑡ℎoutput feature 

map R𝑣 is carried out as presented below, 

 

R 𝑣 = ℱ(𝐶𝑓𝑣 ∗ 𝑃𝑖𝑛)
 

In this context, the non-linear activation function is represented by ℱ(. ), while the two-

dimensional convolutional operation is indicated by the multiplication sign, 𝐶𝑓𝑣
signifies the 

convolutional filter associated with the 𝑣𝑡ℎ  feature map, and 𝐹  denotes the input image after 

undergoing fuzzy layer. 
 

Pooling layer 

Pooling layers in the fuzzy CNN down sample fuzzy pixel representations while retaining 

the membership degrees. This down sampling aids in reducing spatial resolution within the feature 

maps, contributing to spatial invariance against translations and distortions in the input. Through 

pooling aggregation, average values are computed across the input area, and the resulting output 
maps are formed by convolving multiple input maps, as specified by Eq. (2). 

R 𝑘
𝑎 = ℱ(∑ R𝑘

𝑎−1

𝑙,𝐼𝑚

∗ Ψ𝑙,𝑘
𝑎 + 𝐴𝑏𝑘

𝑎)
 

 

The equation presented above signifies the selection of input maps denoted by𝐼𝑚, where 𝑎 

corresponds to the convolutional layer with the 𝑙
𝑡ℎ input and 𝑘

𝑡ℎoutput. The additive bias of 

the convolutional layer 𝑎 is represented as𝐴𝑏𝑎, and the kernel maps of this layer are denoted 

as Ψ𝑙,𝑘. The preceding down sampling layer is referred to as 𝑎 − 1, and its input features are 

represented byR𝑎. 
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Fully Connected layer 

Numerous abstract feature representations are derived by amalgamating the diverse pooling 

and convolutional layers. These representations encapsulate essential characteristics, which are 

subsequently deciphered by the fully connected layers to perform sophisticated high-level 

reasoning operations. 

 

Output layer 

The output layer is responsible for providing the final classification result. For the 

classification scenario of healthy tissue and cancerous tissue, there would be two neurons in the 

output layer. The values produced by these neurons are often transformed using an activation 

function, such as the softmax function, to convert them into probabilities representing the 

likelihood of the input image belonging to each class. 
 

3.2.4 Training 

The tuning of hyper parameters is achieved through the utilization of learning algorithms 

to acquire the desired network output. The commonly employed algorithm for this purpose is back 

propagation. To enhance the effectiveness of the current Fuzzy CNN architecture, optimization 

of the activation function, hidden neurons, and batch size is accomplished by employing the 
proposed Genetic PSO technique. This approach aims to achieve the highest accuracy level 

possible. 

 

3.5.3. Genetic Particle Swarm Optimization (Genetic PSO) 

Prior research has primarily focused on addressing individual challenges within 
optimization, such as the intricacies of hyperparameters tuning or the complications posed by 

local minimums. The novel approach aims to enhance Fuzzy CNN performance by concurrently 

addressing both aspects. In this model, the power of Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO), in conjunction with the Backpropagation (BP) algorithm, to cohesively 

optimize both the network hyperparameters and connection weights. The algorithm for the 

proposed FGPSOGAN is defined as, 
Initialization: Initialize the genetic parameters and particle swarm weight factors. Based on 

the coding scheme, the hyperparameters binary coding to be considered to decide the kernel size, 

batch size, learning rate, and the number of filters. In contrast, connection weights will employ 

real number coding. A direct correspondence is established between the connection weights of 

individual network nodes. Begin by randomly generating 𝑀 initial solutions. 

Fitness Evaluation: The evaluation of the fitness function is pivotal for identifying the 

optimal hyperparameters. Fitness values are computed using equation (7), a comparison reveals 

the solution with the best fitness.  

Position update:Update the present optimal solution and the individual optimal solution as𝑃𝑔 =

[𝑃𝑔
(1), 𝑃𝑔

(2)], 𝑃𝑖 = [𝑃𝑖
(1), 𝑃𝑖

(2)] respectively. Then update the global best fitness. 

Velocity and position update: In the optimization process, the velocity of each particle in the 

swarm needs to be updated to guide its movement towards better solutions. This velocity update 

equation is defined as, 

 

𝑉𝑒𝑧 (𝜏 + 1) = 𝜔 ∗ 𝑉𝑒𝑧(𝜏) + 𝑐1 ∗ 𝑟2 ∗ (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑧) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑧) 

Where,  𝑉𝑒 𝑧 (𝜏 + 1) is the updated velocity,  𝑉𝑒𝑧(𝜏) is the current velocity, 𝜔 is the inertia 

factor,  𝑐 1 and 𝑐2are learning factors,  𝑟1and 𝑟2 are random values in the interval [0, 1],  𝑃𝑏𝑒𝑠𝑡 is 

the individual optimal position reached by the particle,  𝐺𝑏𝑒𝑠𝑡is the global optimal position, and 

𝑋 𝑧  is the current position of the particle. 

The mutation operation in the GA is included during the binary position update of particles 

to introduce randomness and enhance exploration. This helps prevent being stuck in local optima 
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and boosts the chances of finding the global optimum by allowing particles to explore new areas 

in the solution space. The real and binary part of the particle's position is updated based on the 
principles outlined as, 

𝑀(𝑉𝑒𝑧) =
1

1 + exp(−𝑉𝑒𝑧)

 

 

𝑋𝑧 = {
𝑋𝑧, 𝑟𝑎𝑛𝑑 < 𝑀(𝑉𝑒𝑧)

1 − 𝑋𝑧, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝐸ℎ =
𝐿ℎ − 𝑈ℎ
2 ∗ 𝑁𝑣𝑎𝑟

 

 

𝑋𝑧,𝜏,𝑗 = {

𝑋𝑧,𝜏,𝑗 + 𝑑[−0.5,0.5]𝐸ℎ, 𝑋𝑧,𝜏,𝑗 = 𝐺𝑗 𝑜𝑟 𝑑 ∈ [0, 𝐶𝑟] 

𝐺𝑗 + 𝑑[−0.5,0.5]𝐸ℎ, 𝑋𝑧,𝜏,𝑗 ≠ 𝐺𝑗 𝑜𝑟 𝑑 ∈ [𝐶𝑟 , 𝐶𝑔] 

𝑋𝑧,𝜏,𝑗 + 𝑑[−0.5,0.5](𝑋𝑧,𝜏,𝑗 − 𝐺𝑗), 𝑋𝑧,𝜏,𝑗 ≠ 𝐺𝑗 𝑜𝑟 𝑑 ∈ [𝐶𝑔 , 1]
 

 

 
Where, 𝑀 signifies the probability of changing the particle's position, 𝑋𝑧,𝜏,𝑗  denotes the 

value of the 𝑗𝑡ℎ site of  𝑧𝑡ℎ  particle in the 𝑗𝑡ℎ iteration, d is a randomly generated number in [0, 

1], 𝐺 𝑗  signifies the value of the 𝑗𝑡ℎ site of the global optimal particle, 𝐶𝑟  𝑎𝑛𝑑 𝐶𝑔 are constants 

given, 𝐸ℎ pertains to a speed parameter, 𝐿ℎ  𝑎𝑛𝑑 𝑈ℎ represent the upper and lower bounds of the 

variable, respectively, 𝑁𝑣𝑎𝑟 stands for the number of variables. 

Back propagation: Conduct n backpropagation (BP) iterations on particle z. After each 

iteration, update the value of the corresponding position in the real part of particle z based on the 

connection weight adjustments achieved during the iteration. The process continues as described 

above until it reaches the maximum iteration. 

 

4. Results and Discussions  

This section presents the experimental analysis and comparative outcomes of the 

FGPSOCNN model proposed in this study. The model performance is thoroughly evaluated, and 

a comprehensive comparison is conducted with other pertinent methodologies. This assessment 

aims to gauge the effectiveness and capabilities of the proposed FGPSOCNN model. 

 

4.1 Experimental Setup 

The proposed method for predicting oral cancer is implemented using MATLAB R2020a 

on a Windows 10 operating system equipped with 64-bit architecture and 32 GB of RAM. This 

setup offers a reliable and efficient environment to effectively execute the method with optimal 

performance. 
 

4.2 Data Description 

The real-time MRI images was gathered from Aarthi Hospital. This compilation consists 

of 460 images that have been categorized as normal and an oral cancer affected 576 images 

categorized as abnormal. In order to facilitate analysis and processing, the original DICOM format 

of these images has been transformed into PNG format. Each individual image within this dataset 
has dimensions of 256 x 256 pixels and encompasses three color channels, resulting in a 

representation of 256 x 256 x 3 dimensions. A visual depiction of selected sample images from 

this dataset can be observed in Figure 4. 
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Fig. 4. Sample MRI oral scan images  

In Figure 5(a), the showcased patterns highlight the unique characteristics and variations 
associated with the LOOP feature. Figure 5(b) presents the LTP feature, with displayed patterns 

that offer insights into its distinct characteristics and variations. These patterns provide visual 

insights into the qualities, aiding in understanding its structural attributes and potential functions.  

    

(a) 

    

(b) 
Fig. 5. Pattern features (a) LOOP (b)LTP  

Figure 6 presents segmented images utilizing BeePCNN, effectively highlighting the 

detected regions linked to oral cancer. These segmented images distinctly emphasize the specific 

areas that have been identified as indicative of oral cancer, enabling a focused and precise visual 

representation of the affected regions.  

  

Fig. 6. Segmented images 

 

4.3 Performance metrics  

The assessment of the prediction algorithms in this study relies on various performance 
metrics are listed in Table 1. 

Table 1 - Detection metrics 

Metric Formula Explanation 
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Accuracy 𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 Accuracy measures the ratio of correct predictions (both true 
positives and true negatives) to the total predictions, indicating 

overall model performance. 
Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 Precision focuses on the proportion of true positive predictions 

compared to the total instances predicted as positive. It 

emphasizes prediction accuracy. 
Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 Recall, also known as sensitivity or true positive rate, measures 

the proportion of actual positive instances correctly predicted as 
positive by the model. 

F-score 2 ∗ (𝑃 ∗ 𝑅)

𝑃 + 𝑅

 The F-score provides a balance between precision and recall, 

favouring models that achieve both high precision and recall, 
making it suitable for imbalanced datasets. 

Error Rate 𝐹𝑃 + 𝐹𝑁

𝑇𝑃+ 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 The error rate measures the ratio of incorrect predictions (both 
false positives and false negatives) to the total predictions, 

indicating overall prediction inaccuracy. 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 Specificity, also known as true negative rate, measures the 
proportion of actual negative instances correctly predicted as 

negative by the model. 

In Table 1, P and R represents precision and recall, TP (True Positives) is the instances 
correctly predicted as positive by the model, TN (True Negatives) is the instances correctly 

predicted as negative by the model, FP (False Positives) denote the instances incorrectly predicted 

as positive by the model when they are negative, and FN (False Negatives) denote the instances 
incorrectly predicted as negative by the model when they are positive. 

 

4.4 Loss and Accuracy Curve 
Figure 7 displays the accuracy curve of the proposed model, depicting its performance 

across the training and testing phases. Notably, the training phase employs 80% of the total 

samples, while the testing phase utilizes the remaining 20% for evaluation. The graph distinctly 

highlights the model efficacy, achieving an impressive accuracy rate of 97.22%, which serves as 
a testament to its strong performance. In Figure 8, the loss curve of the proposed model is 

displayed. This curve indicates that the model consistently achieved its optimal validation loss, 

ranging from 0.02 to 0.1, throughout both the training and testing stages. Notably, the model 
underwent 100 epochs as part of the accuracy and loss validation process. For a comprehensive 

overview of the hyperparameters employed in this study is listed in Table 2. 
Table 2 - Hyperparameters Used For Classification 

Parameters Values 

Loss function 

Optimizer function 
Metrics 

Epochs 
Batch size 

Learning rate 

Mean_squared_error 

adam 
accuracy 

100 
32 

0.0001 
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Fig. 7. Accuracy Curve For The Proposed Model 

 

 

Fig. 8. Loss Curve For The Proposed Model 

 

4.5 Comparative Analysis 

In this section, a comparative analysis of the proposed FGPSOCNN model is undertaken 

to enhance the efficiency of oral cancer detection. The analysis considers several methods for 

comparison, including CNN Bur et al., (2019), 3D-CNN Warin et al., (2021), PSO-DBN Chamoli 
et al., (2021), Alexnet Capote-Moreno et al., (2020) and Residual U-Net Parkavi et al., (2023). 

The objective is to evaluate the effectiveness of the FGPSOCNN model in achieving accurate and 

efficient oral cancer detection, as compared to these existing methods. 
The performance evaluation of the proposed FGPSOCNN model is conducted 

meticulously, and a comprehensive comparison is made against conventional methodologies, 

including CNN, 3D-CNN, PSO-DBN, Alexnet and Residual U-Net. The evaluation primarily 

employs the accuracy metric and is performed using 70% of the dataset for training and 30% for 
testing. The conventional methods yield moderate accuracy results, with values of 79.74%, 

93.25%, 91.96%, 86.17%, and 93.12%achieved for CNN, 3D-CNN, PSO-DBN, Alexnet, and 

Residual U-Net, respectively. In contrast, the proposed method demonstrates a significant 
improvement, achieving an accuracy of 96.46%, which is superior by 3.44% in comparison to the 

existing techniques. For a more comprehensive and detailed understanding of the performance 

metrics, an in-depth analysis is available in Table 3.  
Table 3 - Comparative Analysis Based On 70% Training And 30% Testing Data 

Methods Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

CNN 
Bhandari et al., (2020) 

79.74 77.54 76.98 81.98 77.26 

3D-CNN 

Xu et al., (2019) 
93.25 93.48 91.49 94.71 92.47 

PSO-DBN 
Myriam et al., (2023) 

91.96 91.30 90.65 93.02 90.97 

Alexnet 
Ariji et al., (2020) 

86.17 84.78 84.17 87.79 84.48 

Residual U-Net Wahid 
et al., (2022) 

93.01 93.27 89.97 94.38 91.68 

Proposed FGPSOCNN 
model 

96.46 96.38 95.68 97.09 96.03 

The evaluation of the proposed FGPSOCNN model's performance has been meticulously 

carried out, and a thorough comparison has been conducted against established methodologies, 

including CNN, 3D-CNN, PSO-DBN, Alexnet and Residual U-Net. The assessment is primarily 
centered around the accuracy metric and has been executed by utilizing 80% of the dataset for 

training and 20% for testing. The conventional methods have produced accuracy outcomes of 

moderate nature, with respective values of 84.06%, 94.69%, 92.75%, 87.98%, and 94.20% 

achieved for CNN, 3D-CNN, PSO-DBN, Alexnet and Residual U-Net. In contrast, the proposed 
approach demonstrates a remarkable enhancement in performance, achieving an accuracy of 
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97.10%. This achievement stands superior by 2.5% when compared to the existing techniques. 
For an in-depth and comprehensive understanding of the performance metrics, an elaborated 

analysis has been provided in Table 4.  
Table 4 - Comparative Analysis Based On 80% Training And 20% Testing Data 

Methods Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

CNN 
Bhandari et al., 

(2020) 
84.06 83.70 81.05 86.61 82.35 

3D-CNN 
Xu et al., (2019) 

94.69 94.57 93.55 95.61 94.05 

PSO-DBN 
Myriam et al., 

(2023) 
92.75 91.30 92.31 93.10 91.80 

Alexnet 

Ariji et al., (2020) 
87.98 89.13 84.54 90.99 86.77 

Residual U-Net 
Wahid et al., (2022) 

94.20 94.57 92.55 95.58 93.55 

Proposed 
FGPSOCNN model 

97.10 96.74 96.74 97.39 96.74 

 

4.2.1. Analysis of Confusion Matrix 

The effectiveness of the suggested classification approach is validated using a 2x2 

confusion matrix for normal and abnormal nodules. The confusion matrices for various methods 
are shown in Figure9.  

  

(a) (b) 

  

(c) (d) 
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(e) (f) 
Fig. 9. The outcomes of confused matrices for various methods.  (a) CNN, (b)3D-CNN, (c) PSO-DBN, (d)Alexnet, 

(e) Residual U-Net and (f)Proposed FGPSOCNN. 

The analysis presented above underscores the impact of utilizing 80% of the training data 

within the proposed FGPSOCNN model, resulting in an exceptional performance boost for oral 

cancer prediction. This performance surpasses the accuracy levels achieved by conventional 

methods. 
The proposed method demonstrates superiority over existing techniques in terms of various 

performance metrics. This superiority can be attributed to its adept utilization of preprocessing 

techniques that effectively enhance the quality of input data. Furthermore, the incorporation of 

BeePCNN segmentation proves instrumental in reducing computational time by precisely 

isolating the affected regions. As a result of these advancements, the oral cancer prediction 
achieved through the proposed FGPSOCNN model showcases a remarkable enhancement in 

prediction accuracy. This enhancement is primarily attributed to the integration of fuzzy logic 

into the CNN architecture, which empowers the model to extract intricate features and patterns 

from the data, thereby improving its predictive capabilities. 

In essence, the proposed FGPSOCNN model offers an efficacy approach that optimizes 

multiple aspects of the prediction process. By synergistically leveraging preprocessing 
techniques, efficient region segmentation, and the fusion of fuzzy logic and CNN, the model 

achieves a substantial performance leap in the challenging task of oral cancer prediction 

 

5. Conclusion  

This study presents a focused exploration into the detection of oral cancer using real-time 
MRI images. The research introduces novel deep learning techniques for the accurate diagnosis 

of oral cancer. The proposed approach revolves around effective feature extraction and 

segmentation through the innovative BeePCNN technique. For classification, a novel method 

called FGPSOCNN is introduced, enhancing accuracy. The study leverages powerful feature 

extraction techniques, namely LOOP and LTP, to effectively capture meaningful patterns from 

the data. The dataset used for evaluation is derived from Arthi Scan Hospital, comprising real-
time MRI images. Experimental results showcase the superiority of the novel FGPSOCNN model 

over existing methodologies. Through comparative analysis with conventional techniques, the 

proposed model remarkable performance comes to light. The model achieves impressive rates of 

accuracy (97.10%), precision (96.74%), recall (96.74%), specificity (97.39%), and f1-score 

(96.74%). Future research could explore improved tumor classification and model enhancement. 
Additionally, the study plans to assign malignancy grades to images to aid clinical decision-

making for oral diseases. 

 

Authors Contribution 
This work encompasses the development of a comprehensive framework that combines 

novel deep learning methods, feature extraction techniques, and reduced computational 

complexity to enhance the detection and classification of oral cancer disorders, ultimately 

facilitating early diagnosis and improved treatment outcomes. 
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	ABSTRACT
	Oral cancer presents a pressing global health concern, ranking as the eighth most prevalent cancer worldwide and leading to a significant number of deaths, particularly evident in India with an annual toll of around 130,000 lives lost to mouth cancer....
	Keywords: Oral cancer, Deep learning, BeePCNN, Fuzzy, Particle swarm optimization, FGPSOCNN.
	1. Introduction
	Oral cancer presents a significant global burden, both economically and in terms of clinical impact. Among the various forms of oral cancer, oral squamous cell carcinoma (OSCC) is the most common, accounting for about 90% of cases. (Ezhilarasan et al....
	In recent years, advancements in machine learning algorithms have shown promising results in various medical applications, including cancer detection. These algorithms have played a significant role in predicting OSCC biopsies, offering improved accur...
	Machine learning is an artificial intelligence technique that enables computer systems to learn from data without requiring explicit programming. It can be categorized into supervised and unsupervised learning (Panigrahi et al., 2022; Janiesch et al.,...
	The paper is structured as follows, Section 2 discusses relevant contemporary literature, Section 3 provides a detailed description of the proposed architecture, Section 4 presents the experimental results and subsequent discussions, and Section 5 con...
	2. Literature Review
	Bhandari et al., (2020) proposed a CNN architecture with a tailored loss function designed to minimize errors, reduce overfitting, and support multi-class classification. The derivation of the modified loss function involves a combination of the Mean ...
	In Xu et al., (2019), the authors proposed a 3DCNN-based algorithm for the early diagnosis of oral cancer. The algorithm was trained on a dataset of 3D CT images of oral cancer patients. The authors also used data augmentation to increase the size of ...
	Additionally, Welikala et al., (2020) introduced an automated deep learning-based system for detecting and classifying oral lesions. While these approaches hold promise, it's important to note that they come with high computational complexity, which m...
	Patibandla, S.K. et al., (2023) designed an oral cancer detection model using CNN. This method integrates an edge-based segmentation technique with labelled pixel extraction. While the approach holds the potential to improve image quality and enhance ...
	Building upon the insights from the literature analysis, the current study delves into the classification of oral MRI images. The study introduces novel variations and layers within the FGPSOCNN architecture.
	3. Research Methods
	The oral cancer detection process commences by collecting input MRI images, which then undergo a crucial pre-processing stage utilizing an Adaptive Bilateral Filter (ABF). This filter is a type of image enhancement technique that helps to reduce noise...
	Fig. 1. The Overall Design of The Proposed Oral Detection Model
	3.1. Dataset
	The oral cancer detection process begins with the acquisition of real-time MRI images from the Arthi Scan Hospital. MRI images obtained using a 3.0 Tesla MRI machine are known for their high image quality due to the stronger magnetic field. Storing th...
	3.2. Pre-processing
	Pre-processing enhances MRI image quality by reducing noise using Adaptive Bilateral Filter (ABF). The ABF is a sophisticated technique used in MRI image pre-processing. ABF not only reduces noise but also preserves edges and fine details by consideri...
	For an input image𝐼,𝑎,𝑏. and a pixel location (𝑎,𝑏)within the image, the filtered output ,𝐹-,𝑜𝑢𝑡-..(𝑎,𝑏)within the defined neighbourhood pixel𝜑, using the ABF can be expressed as,
	,𝐹-𝑜𝑢𝑡.,𝑎,𝑏.=,1-𝜇.,,𝑏∈𝜑-.-,𝑊-𝑠.,,𝑎−𝑏..,𝑊-𝑟.,,,𝐼-𝑎.−,𝐼-𝑏....,𝐼-𝑎.
	Where,,𝑊-𝑠.,,𝑎−𝑏.. is the spatial weight, dependent on the spatial distance between the central pixel 𝑎 and the neighboring pixel 𝑏, ,𝑊-𝑟.,,,𝐼-𝑎.−,𝐼-𝑏...is the range weight, determined by the absolute difference between the intensity value...
	𝜇=,,𝑏∈𝜑-.-,𝑊-𝑠.,,𝑎−𝑏..,𝑊-𝑟.,,,𝐼-𝑎.−,𝐼-𝑏....
	Upon the completion of the pre-processing stage, the subsequent step in the pipeline involves feature extraction.
	3.3. Feature Extraction
	Feature extraction involves identifying and capturing meaningful information from the pre-processed images that can be used to distinguish between different classes or categories, such as oral cancer and normal cases.
	3.3.1. Local Optimal Orientated Pattern (LOOP)
	The LOOP is combines the strengths of Local Directional Pattern (LDP) and Local Binary Pattern (LBP) while overcoming their respective issues. LBP is a well-known descriptor that captures local intensity variation patterns in an image and demonstrates...
	,𝐹-𝑙𝑜𝑜𝑝.,,𝑟-1.,,𝑟-2..=,,𝑣=0-.-𝐴−1-𝑘(,𝑧-𝑣.−,𝑧-0.).∗,2-,𝑤-𝑣..
	Where ,𝑧-0.is the pixel intensity of an image at,,𝑟-1.,,𝑟-,2-..., an exponential value, denoted as ,𝑤-𝑣., is assigned to each of these neighboring pixels, taking a digit between 0 and A-1,and ,𝑧-,𝑣-.. represents the Kirsch masks are oriented in...
	(𝑣 =1, 2, ..., 𝐴−1), providing a measure of the intensity variation strength.
	𝑧,𝑟.=,,1,  &𝑖𝑓 𝑥≥0-0,  &𝑖𝑓 𝑥<0..
	The main formulation of the LOOP descriptor encodes rotation invariance, allowing it to handle varying orientations in an image.
	3.3.2. Local Ternary Pattern (LTP)
	LTP is an extension of the LBP operator and the basic idea of LTP is to compare the central pixel value with its neighbors in a circular region around it by thresholding, and then encode the comparisons into a ternary code. The LTP operator is formed ...
	,𝐹-,𝑙𝑡𝑝--..,,𝑟-1.,,𝑟-2..=,𝑣=0-𝐴−1-𝑘(,𝑧-𝑣.−,𝑧-0.).∗,3-𝑣.
	𝑧,𝑟.=,,1,              𝑟≥𝛼-0,    𝛼<𝑟<𝛼-−1,            𝑟<−𝛼-..
	Where,𝛼 denotes threshold value, and ,3-𝑣.represents the weight to emphasize the importance of certain positions within the neighborhood.
	3.4. Segmentation
	Upon obtaining pattern images, the following stage involves segmentation, wherein the goal is to precisely delineate cancer-affected areas by outlining their boundaries within the images. This accurate boundary identification holds significance for ef...
	3.4.1. Bee Pulse-Coupled Neural Network (BeePCNN)
	The BeePCNN segmentation method employs a Pulse-Coupled Neural Network (PCNN) framework, with hyperparameters fine-tuned using the Artificial Bee Colony (ABC) algorithm, to enhance the accuracy and effectiveness of the segmentation. Optimization probl...
	Fig. 2. Architecture of BeePCNN
	PCNN: The PCNN model originates from a configuration of pulse-coupled neurons arranged in a two-dimensional array. This model, often used for image segmentation, represents pixels as neurons within this array. When a neuron in the PCNN model undergoes...
	,Φ-𝑥𝑦.,𝑙.=,Κ-𝑥𝑦.
	Where, ,Φ-,𝑥𝑦-..,𝑙. and ,Κ-𝑥𝑦.are denote the feedback input and external input excitation respectively. The input feeding subsystem, modulation, and dynamic threshold subsystems are expressed as,
	,X-𝑥𝑦.,𝑙.=,,𝑖,𝑗-.-,Φ-𝑥𝑦,𝑖𝑗.,𝑙..,Η-𝑖𝑗.,𝑙−1.
	,Y-𝑥𝑦.,𝑙.=,Φ-𝑥𝑦.,𝑙.,,𝛿∗,X-𝑥𝑦.,𝑙.+1-..
	,Η-𝑥𝑦.,𝑙.=,,1,  &,Y-𝑥𝑦.,𝑙.>,𝑀-𝑥𝑦.(𝑙−1)-0,  &𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒-..
	Where, ,X-,𝑥𝑦-..,𝑙. represents connect input for the model, ,Y-𝑥𝑦.,𝑙. is internal activity term within the neural network, and ,Η-,𝑥𝑦-..,𝑙.  is pulse output value of the neural network, ,Φ-𝑥𝑦,𝑖𝑗. is connection weight matrix between neuron...
	,𝜃-,𝑥𝑦-..,𝑙.=,𝑒-−,𝛼-𝑀..∗,𝑀-𝑥𝑦.,𝑙−1.+,𝑉-𝑀.∗,Η-𝑥𝑦.,𝑙.
	Where, 𝛿is connection coefficient, 𝛼 and,𝑉-,𝑀-..are the amplitude constants and time decay constants of the dynamic threshold, respectively.
	Image segmentation focuses on neuron-triggered firing, either naturally or via neighbours. Neurons fire once per iteration, ensuring minimum threshold attenuation to enable firing chances. All neurons can fire when dynamic threshold reaches minimal at...
	PCNN hyperparameter tuning using ABC: Initially, hyperparameters space is defined, this includes the range of values for each hyperparameters in PCNN. The search space for hyperparameters tuning involves the learning rate, momentum, hidden neurons, ba...
	,𝑄-,𝑖,𝑗-..=,𝐿𝐵-𝑗.+𝑟𝑎𝑛𝑑,0,1.∗(,𝑈𝐵-𝑗.−,𝐿𝐵-𝑗.)
	Next, Evaluate the fitness of each solution using the objective function in equation (13).This step determines how well each set of hyperparameters performs on the given task. In this study, the selected fitness function is the mean square error (MSE)...
	𝐹𝑖𝑡=,1-𝑛.,,𝑖=1-.-𝑛-,,,𝑦-𝑖.−,,𝑦-𝑖...-2..
	Where, 𝑛 is the number of samples, ,𝑦-𝑖. represents the actual (observed) value for the ,𝑖-𝑡ℎ.sample, and ,,𝑦-𝑖..represents the predicted value by the model for the ,𝑖-𝑡ℎ.sample. The employed bees update their solutions by making small pertur...
	,𝑉-𝑖,𝑗.=,,,𝑄-𝑖,𝑗.+𝜁∗ ,(𝑄-𝑖,𝑗.−,𝑄-𝑘,𝑗.),  &𝑟𝑎𝑛𝑑<,𝑀-𝑟.-,𝑄-𝑖,𝑗.,  &𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒-..
	Here, ,𝑀-𝑟.is the modification rate. Onlooker bees select solutions based on their fitness, with better solutions having a higher probability of being chosen. These onlooker bees generate new solutions similarly to the employed bees. If a solution h...
	3.5.1. Proposed FGPSOCNN based classification
	The proposed classification approach involves utilizing a novel technique called FGPSOCNN, which likely stands for Fuzzy Genetic Particle Swarm Optimization Convolutional Neural Network. This hybrid methodology integrates the CNN, with fuzzy logic for...
	Fig. 3. The proposed FGPSOCNN model
	3.5.2. Fuzzy Convolutional Neural Network (Fuzzy CNN)
	CNN have achieved impressive results in image classification tasks. However, when dealing with medical images, uncertainties and imprecisions arising from factors like varying lighting conditions, tissue appearance, and image quality can undermine cla...
	Input Layer
	The input layer of the Fuzzy CNN receives segmented oral images and passes their pixel values to the network. It acts as a starting point, conveying the image information for further classification. The input layer of the Fuzzy CNN can be represented as:
	𝐼=,,𝑆𝑒-,1-..,,𝑆𝑒-2.,,…..𝑆𝑒-𝑖.,….,𝑆𝑒-𝑛..,   (𝑁=1,2,3,…..𝑛)
	Where 𝑁 denotes the total number of images, 𝐼the input vector containing pixel is values of the segmented oral image, and ,𝑆𝑒-,𝑖-..represents the ,𝑖-𝑡ℎ.pixel value.
	Fuzzy layer
	When an image is input into the fuzzy layer, each pixel value is considered as an input value. These input values are then transformed using the predefined fuzzy membership functions
	Each pixel value is mapped to membership degrees across different categories based on these functions. The working of fuzzy layer is explained as follows.
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	Fuzzification Process: The fuzzification process assigns membership degrees to each pixel value based on the membership functions. This process is essentially a mapping of pixel values to membership degrees in different fuzzy sets. The membership degr...
	Fuzzy Pixel Representation: After the fuzzification process, each pixel in the image is represented not by a single value but by a set of membership degrees corresponding to various fuzzy sets. This representation captures the uncertainty and vaguenes...
	Convolution layer
	The fuzzy pixel representation is then integrated into the convolutional layers. The convolutional layers apply convolution operations to the fuzzy pixel values, considering the membership degrees along with the convolutional filters. The convolutiona...
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	Pooling layer
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	Fully Connected layer
	Numerous abstract feature representations are derived by amalgamating the diverse pooling and convolutional layers. These representations encapsulate essential characteristics, which are subsequently deciphered by the fully connected layers to perform...
	Output layer
	The output layer is responsible for providing the final classification result. For the classification scenario of healthy tissue and cancerous tissue, there would be two neurons in the output layer. The values produced by these neurons are often trans...
	3.2.4 Training
	The tuning of hyper parameters is achieved through the utilization of learning algorithms to acquire the desired network output. The commonly employed algorithm for this purpose is back propagation. To enhance the effectiveness of the current Fuzzy CN...
	3.5.3. Genetic Particle Swarm Optimization (Genetic PSO)
	Prior research has primarily focused on addressing individual challenges within optimization, such as the intricacies of hyperparameters tuning or the complications posed by local minimums. The novel approach aims to enhance Fuzzy CNN performance by c...
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	Back propagation: Conduct n backpropagation (BP) iterations on particle z. After each iteration, update the value of the corresponding position in the real part of particle z based on the connection weight adjustments achieved during the iteration. Th...
	4. Results and Discussions
	This section presents the experimental analysis and comparative outcomes of the FGPSOCNN model proposed in this study. The model performance is thoroughly evaluated, and a comprehensive comparison is conducted with other pertinent methodologies. This ...
	4.1 Experimental Setup
	The proposed method for predicting oral cancer is implemented using MATLAB R2020a on a Windows 10 operating system equipped with 64-bit architecture and 32 GB of RAM. This setup offers a reliable and efficient environment to effectively execute the me...
	4.2 Data Description
	The real-time MRI images was gathered from Aarthi Hospital. This compilation consists of 460 images that have been categorized as normal and an oral cancer affected 576 images categorized as abnormal. In order to facilitate analysis and processing, th...
	Fig. 4. Sample MRI oral scan images
	In Figure 5(a), the showcased patterns highlight the unique characteristics and variations associated with the LOOP feature. Figure 5(b) presents the LTP feature, with displayed patterns that offer insights into its distinct characteristics and variat...
	Fig. 5. Pattern features (a) LOOP (b)LTP
	Figure 6 presents segmented images utilizing BeePCNN, effectively highlighting the detected regions linked to oral cancer. These segmented images distinctly emphasize the specific areas that have been identified as indicative of oral cancer, enabling ...
	Fig. 6. Segmented images
	Table 2 - Hyperparameters Used For Classification
	Fig. 7. Accuracy Curve For The Proposed Model
	Fig. 8. Loss Curve For The Proposed Model
	4.2.1. Analysis of Confusion Matrix
	The effectiveness of the suggested classification approach is validated using a 2x2 confusion matrix for normal and abnormal nodules. The confusion matrices for various methods are shown in Figure9.
	Fig. 9. The outcomes of confused matrices for various methods.  (a) CNN, (b)3D-CNN, (c) PSO-DBN, (d)Alexnet, (e) Residual U-Net and (f)Proposed FGPSOCNN.
	The analysis presented above underscores the impact of utilizing 80% of the training data within the proposed FGPSOCNN model, resulting in an exceptional performance boost for oral cancer prediction. This performance surpasses the accuracy levels achi...
	The proposed method demonstrates superiority over existing techniques in terms of various performance metrics. This superiority can be attributed to its adept utilization of preprocessing techniques that effectively enhance the quality of input data. ...
	In essence, the proposed FGPSOCNN model offers an efficacy approach that optimizes multiple aspects of the prediction process. By synergistically leveraging preprocessing techniques, efficient region segmentation, and the fusion of fuzzy logic and CNN...
	5. Conclusion
	This study presents a focused exploration into the detection of oral cancer using real-time MRI images. The research introduces novel deep learning techniques for the accurate diagnosis of oral cancer. The proposed approach revolves around effective f...
	Authors Contribution
	References
	Abati, S., Bramati, C., Bondi, S., Lissoni, A., & Trimarchi, M. (2020). Oral cancer and precancer: a narrative review on the relevance of early diagnosis. International Journal of Environmental Research and Public Health, 17(24), 9160. https://doi.org...
	Alhazmi, A., Alhazmi, Y., Makrami, A., Masmali, A., Salawi, N., Masmali, K., & Patil, S. (2021). Application of artificial intelligence and machine learning for prediction of oral cancer risk. Journal of Oral Pathology & Medicine, 50(5), 444-450. http...
	Amin, I., Zamir, H., & Khan, F. F. (2021). Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models. medRxiv, 2021-05. https://doi.org/10.1101/2021.05.06.21256741
	Ariji, Y., Sugita, Y., Nagao, T., Nakayama, A., Fukuda, M., Kise, Y., Nozawa, M., Nishiyama, M., Katumata, A., & Ariji, E. (2020). CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma us...
	Bansal, K., Batla, R.K., Kumar, Y., & Shafi, J. (2022). Artificial intelligence techniques in health informatics for oral cancer detection. In Connected e-Health: Integrated IoT and Cloud Computing, 255-279. Springer International Publishing. http://d...
	Bhandari, B., Alsadoon, A., Prasad, P. W. C., Abdullah, S., & Haddad, S. (2020). Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools and Applications, 79(37-38), 27867-27890. Advance onl...
	Bhandari, B., Alsadoon, A., Prasad, P.W.C., Abdullah, S., & Haddad, S. (2020). Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools and Applications, 79, 27867-27890.
	Capote-Moreno, A., Brabyn, P., Muñoz-Guerra, M.F., Sastre-Pérez, J., Escorial-Hernandez, V., Rodríguez-Campo, F.J., García, T., & Naval-Gías, L. (2020). Oral squamous cell carcinoma: epidemiological study and risk factor assessment based on a 39-year ...
	Chamoli, A., Gosavi, A.S., Shirwadkar, U.P., Wangdale, K.V., Behera, S.K., Kurrey, N.K., Kalia, K., & Mandoli, A. (2021). Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncology, 121, 105451. https://d...
	Chu, C.S., Lee, N.P., Adeoye, J., Thomson, P., & Choi, S.W. (2020). Machine learning and treatment outcome prediction for oral cancer. Journal of Oral Pathology & Medicine, 49(10), 977-985. https://doi.org/10.1111/jop.13089
	Das, D. K., Bose, S., Maiti, A. K., Mitra, B., Mukherjee, G., & Dutta, P. K. (2018). Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis. Tissue and Cell, 53, 111–119....
	Das, N., Hussain, E., & Mahanta, L.B. (2020). Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Networks, 128, 47-60. https://d...
	Deif, M. A., Attar, H., Amer, A., Issa, H., Khosravi, M. R., & Solyman, A. A. A. (2022). A new feature selection method based on a hybrid approach for colorectal cancer histology classification. Wireless Communications and Mobile Computing, 2022, Arti...
	Deshmukh, V., & Shekar, K. (2021). Oral squamous cell carcinoma: Diagnosis and treatment planning. Oral and maxillofacial surgery for the clinician, 1853-1867. https://doi.org/10.3390/diagnostics13071353
	Dixit, S., Kumar, A., & Srinivasan, K. (2023). A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics, 13(7), 1353.
	El-Hasnony, I.M., Elzeki, O.M., Alshehri, A., & Salem, H. (2022). Multi-label active learning-based machine learning model for heart disease prediction. Sensors, 22(3), 1184. https://doi.org/10.3390/s22031184
	Ezhilarasan, D., Lakshmi, T., Subha, M., Deepak Nallasamy, V., & Raghunandhakumar, S. (2022). The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Diseases, 28(3), 559-567. https://doi.org/10.1111/odi.13798
	Folmsbee, J., Liu, X., Brandwein-Weber, M., & Doyle, S. (2018, April). Active deep learning: Improved training efficiency of convolutional neural networks for tissue classification in oral cavity cancer. In 2018 IEEE 15th international symposium on bi...
	Fukumoto, C., Uchida, D., & Kawamata, H. (2022). Diversity of the origin of cancer stem cells in oral squamous cell carcinoma and its clinical implications. Cancers, 14(15), 3588. https://doi.org/10.3390%2Fcancers14153588
	Huang, C., Zhang, G., Chen, S., & de Albuquerque, V.H.C. (2022). An intelligent multisampling tensor model for oral cancer classification. IEEE Transactions on Industrial Informatics, 18(11), 7853-7861. https://doi.org/10.1109/TII.2022.3149939
	Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
	Jubair, F., Al-karadsheh, O., Malamos, D., Al Mahdi, S., Saad, Y., & Hassona, Y. (2022). A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Diseases, 28(4), 1123–1130. https://doi.org/10.1111/odi.13825
	Ketabat, F., Pundir, M., Mohabatpour, F., Lobanova, L., Koutsopoulos, S., Hadjiiski, L., Chen, X., Papagerakis, P., & Papagerakis, S. (2019). Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceut...
	Khanagar, S.B., Al-Ehaideb, A., Maganur, P.C., Vishwanathaiah, S., Patil, S., Baeshen, H.A., Sarode, S.C., & Bhandi, S. (2021). Developments, application, and performance of artificial intelligence in dentistry–A systematic review. Journal of dental s...
	Kirubabai, M.P., & Arumugam, G. (2021). Deep learning classification method to detect and diagnose the cancer regions in oral MRI images. Med. Leg. Update, 21, 462-468. https://doi.org/10.37506/mlu.v21i1.2353
	Mercadante, V., Scarpa, E., De Matteis, V., Rizzello, L., & Poma, A. (2021). Engineering polymeric nanosystems against oral diseases. Molecules, 26(8), 2229. https://doi.org/10.3390/molecules26082229
	Musulin, J., Štifanić, D., Zulijani, A., Ćabov, T., Dekanić, A., & Car, Z. (2021). An enhanced histopathology analysis: An AI-based system for multiclass grading of oral squamous cell carcinoma and segmenting of epithelial and stromal tissue. Cancers,...
	Myriam, H., Abdelhamid, A.A., El-Kenawy, E.S.M., Ibrahim, A., Eid, M.M., Jamjoom, M.M., & Khafaga, D.S. (2023). Advanced meta-heuristic algorithm based on Particle Swarm and Al-biruni Earth Radius optimization methods for oral cancer detection. IEEE A...
	Panigrahi, S., Nanda, B.S., & Swarnkar, T. (2022). Comparative analysis of machine learning algorithms for histopathological images of oral cancer. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2021 (pp. 318-327). S...
	Parkavi, A., Tiriyar, Y., Borthakur, P.J., Patil, P., & Haleem, M.B. (2023, August). Deep Learning Techniques for the Detection and Classification of Oral Cancer Using Histopathological Images. In 2023 International Conference on Circuit Power and Com...
	Patibandla, S.K., & Peram, S.R. (2023). CT Image Precise Denoising Model with Edge Based Segmentation with Labeled Pixel Extraction Using CNN Based Feature Extraction for Oral Cancer Detection. Traitement du Signal, 40(3), 1297. https://doi.org/10.182...
	Rahman, A.U., Alqahtani, A., Aldhafferi, N., Nasir, M.U., Khan, M.F., Khan, M.A., & Mosavi, A. (2022). Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors, 22(10), 3833. https://do...
	Rao, R.S., Shivanna, D.B., Lakshminarayana, S., Mahadevpur, K.S., Alhazmi, Y.A., Bakri, M.M.H., Alharbi, H.S., Alzahrani, K.J., Alsharif, K.F., Banjer, H.J., & Alnfiai, M.M. (2022). Ensemble Deep-Learning-Based Prognostic and Prediction for Recurrence...
	Shamala, A., Halboub, E., Al-Maweri, S.A., Al-Sharani, H., Al-Hadi, M., Ali, R., Laradhi, H., Murshed, H., Mohammed, M.M., & Ali, K. (2023). Oral cancer knowledge, attitudes, and practices among senior dental students in Yemen: a multi-institution stu...
	Wahid, K.A., Ahmed, S., He, R., van Dijk, L.V., Teuwen, J., McDonald, B.A., Salama, V., Mohamed, A.S., Salzillo, T., Dede, C., & Taku, N. (2022). Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and i...
	Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., & Jantana, P. (2021). Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. Journal of Oral Pathology & Medicine, 50(9), 911-918. https...
	Welikala, R., Remagnino, P., Lim, J., Chan, C. S., Rajendran, S., George, T., Zain, R., Jayasinghe, R., Rimal, J., Kerr, A., Amtha, R., Patil, K., Tilakaratne, W., Gibson, J., Cheong, S., & Barman, S. (2020). Automated Detection and Classification of ...
	Zhou, Y., Tang, Y., Luo, J., Yang, Y., Zang, H., Ma, J., Fan, S. and Wen, Q., (2023). High expression of HSP60 and survivin predicts poor prognosis for oral squamous cell carcinoma patients. BMC Oral Health, 23(1), p.629. https://doi.org/10.1186%2Fs12...

