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ABSTRACT  
The assembly line balancing problem (ALBP) has been an attractive research topic for decades, but the 
industrial application of the research findings remains limited. This can be attributed to the complexity of 
solution methods, restrictive assumptions, and the numerous variants of the problem in real-world settings. 
This article proposes using the precedence matrix as a foundation for developing efficient analysis 
frameworks for ALBP. We introduce algorithms for constructing the precedence matrix and using it to 
guide the development of feasible assembly line designs. Implemented in a spreadsheet model, the matrix 
framework provides a straightforward tool for organizing the balancing problem data, managing inputs to 
balancing heuristics, and ensuring feasible solutions. It is flexible and can be integrated with various 
balancing methods. In this work, we utilized simple priority rules for line balancing to demonstrate the 
potential of the matrix model. A performance comparison of the balancing rules showed that optimal 
solutions were achieved in over 60% of the test problems. The results demonstrate that the proposed matrix 
model is an efficient tool for production managers to evaluate potential line designs. The goal of this work 
is to help bridge the gap between research and practice in assembly line balancing. 
Keywords: Assembly Line Balancing, Precedence Matrix, Spreadsheets, Priority Rules 
 
1. Introduction  

The assembly line is a flow production system where products are built on a series of 
workstations, with each station performing a partial set of tasks needed to complete the product. 
Assigning the tasks to the workstations is constrained by a set of precedence relations, which state 
the required technological order among the tasks. Each workstation is allocated a time window to 
perform its assigned tasks, that imposes an additional constraint. This time window, determined 
based on the required production rate, is commonly called the cycle time. Given the precedence 
constraints and the required cycle time, the goal is to distribute all the tasks to workstations such 
that the total time at each station does not exceed the cycle time, all precedence constraints are 
satisfied, and the number of needed workstations is minimized. This is known as the assembly 
line balancing problem (ALBP). It is a nonpolynomial (NP) hard combinatorial optimization 
problem (Ahmadi & van der Rhee, 2023; Lapierre et al., 2006) for which exact mathematical 
solution procedures become interactable as the number of assembly tasks increases. 

The ALBP was characterized during the 1950s and has been a popular research topic since 
then. Assembly lines are used in mass production systems, e.g., for the assembly of consumer 
electronics, appliances and, most famous of all, the assembly of cars. In fact, the first assembly 
line was developed by Ford more than a century ago (Nicholas, 2018). Line balancing is crucial 
in the industrial sector as it directly impacts production efficiency, resources utilization and the 
overall operational performance of the organization (Hu et al., 2015; Rahman et al., 2023) and is 
key for sustainable competitiveness in a fast-paced industrial environment.  

The literature on ALBP solution methods and system configurations is extensive. There is 
a good number of surveys on the line balancing, see for example Boysen et al. (2022), Jiao et al. 
(2021), Eghtesadifard et al. (2020), Chutima (2020), and Battaïa & Dolgui (2013). However, there 
exists a considerable gap between the academic discussions and practical applications in the line 
balancing area (Boysen et al., 2022; Katiraee et al., 2023; Pearce et al., 2019). Although many 
exact solution methods and advanced heuristic algorithms are available, simpler solution 
approaches are more commonly used in industry (Gonzales-Rodriguez, 2022). A review 
(Chutima, 2020) found that, between 2014 and 2018, only around 13% of research referenced 
real-world industry applications of line balancing techniques. It was similar situations during 
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1970s and 1980s (Boysen et al., 2022; Pearce et al., 2019). Based on their field experiences, 
Boysen et al. (2022) stated that only a small percentage of companies applied the advanced 
balancing procedures. They considered that an “ongoing challenge” for the line balancing 
research efforts. In addition, human workers and manual operations are common on assembly 
lines (Ozdemir et al., 2021; Şahin & Kellegöz, 2024; Sotskov, 2023) and process managers still 
relay on their experiences in making decisions regarding assembly line designs, which may 
sometimes lack proper validation (Manoria et al., 2012; Rahman et al., 2023). 

 Pearce et al. (2019) argued that the limited implementation of balancing algorithms in 
industry could be attributed to management’s approval of good feasible solutions instead of 
seeking optimal ones due to computational difficulties, not knowing of theoretical algorithmic 
methods, financial resource limitations, and, sometimes, organizational resistance to change. The 
numerous possibilities in the assembly line settings and the restrictive assumptions in the solution 
methods may make it harder to fit theoretical solutions to the real-world applications (Katiraee et 
al., 2023; Pearce et al., 2019). The previously mentioned have counted dozens of variants of the 
ALBP, categorized by line layout, product models, task times variability, problem objectives, 
modes of operations, and other considerations. 

Limited industrial applications will further widen the gap between research and practice. 
The line balancing problem will continue to get more complex with the advances in 
manufacturing technologies and the introduction of more constraints and objectives (Ahmadi & 
van der Rhee, 2023; Chutima, 2022; Schlueter & Ostermeier, 2022). We argue that there is a real 
need to develop simpler, more practical analysis frameworks to support practitioners in designing 
assembly lines. In line with that, this article proposes using the precedence matrix as a foundation 
for developing intuitive approaches to studying the ALBP. The precedence matrix is a storage 
structure of precedence relations data in a way that facilitates the estimation of many problem-
related indices and features. We introduce algorithms for constructing the precedence matrix and 
using it to guide the balancing heuristics in developing feasible task assignments to the 
workstations. The matrix model can be adopted in the development of balancing heuristics to 
simplify the process and manage the inputs to the execution of the heuristics. We also describe a 
spreadsheet implementation of the precedence matrix framework, integrated with selected 
balancing rules, to demonstrate its potential. 
 
2. Literature Review 
2.1 The Assembly Line Balancing Problem 

 The ALBP is traditionally categorized into two basic types. Type I seeks to determine the 
minimum number of needed workstations to perform the assembly job, given the required 
production rate (cycle time). Type II seeks to determine the highest production rate (minimum 
cycle time) to perform the assembly job on a given set of workstations. Type I is more common 
in research, and it is the basic formulation, whereas Type II problems can be approached by using 
Type I solution methods in an iterative fashion (Bao et al., 2023; Fathi et al., 2018; Lapierre et 
al., 2006). Type I problem implies that a new assembly line is to be designed to produce a new 
product, whereas Type II assumes an existing line that needs to be modified to accommodate 
production or design changes. The basic objective function of the problem is defined as follows, 
where 𝑚 is the number of workstations, 𝐶  cycle time, 𝑡$	processing time of task 𝑖 , and 𝑛 the 
number of assembly tasks: 

𝑀𝑖𝑛	𝑍 = 	𝑚	𝐶 −	,𝑡$	

-

$./

 

Since the sum of processing times is constant, optimizing the objective function can be 
approached by minimizing the number of stations for a given cycle time (Type I) or minimizing 
the cycle time for a given number of stations (Type II). In both cases, optimizing the objective 
function is equivalent to minimizing total idle time on the workstations (Erel & Sarin, 1998). 
When the sum of task times at each station is equal, the line is considered balanced. The total time 
at each station must be less than or equal to the required cycle time. A balanced assignment of 
tasks to workstations eliminates bottlenecks and contributes to achieving smoother workflow and 
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higher efficiency, that leads to better cost performance and higher levels of leanness in the system 
(Nicholas, 2018). 

Precedence relations are hard constraints that must be satisfied. They are the main 
characteristic of the ALBP. For 𝑛 tasks in an assembly job, with 𝑟 precedence relations among 
them, there are 𝑛!/2𝑟 different task sequences that need to be evaluated, which is a prohibitive 
large number in most industrial problems (Erel & Sarin, 1998). Precedence relations can be 
represented graphically by the precedence diagram, which is a directed graph with nodes as tasks, 
and arrows as precedence relations. The precedence diagram was first described by Salveson 
(1955) and Jackson (1956) and used for manual solutions. While it is used for illustration purposes 
in textbooks and some research articles, solving the balancing problem directly on the diagram 
gets impractical as the problem size increases. Figure 1 shows the precedence diagram for a 12-
task assembly job. Processing times of each task are shown on the top of each node.  

 

Fig. 1. Precedence diagram for a 12-task assembly job 
 
2.2 The Precedence Matrix 

Alternatively, the precedence relations can be stored in matrix format. Organizing the 
precedence relations in a matrix format was utilized by some researchers to develop balancing 
heuristics. Hoffmann’s heuristic (Hoffmann, 1963) used a matrix that contained an entry of 1 if 
there was an immediate precedence relation between two tasks, and 0 otherwise. It was a square 
matrix of zeros and ones, with the number of rows and columns equal to the number of tasks. 
Only immediate relations (e.g., task 4 immediately follows task 1 in Figure 1) were indicated on 
the matrix while non-immediate relations (e.g., task 8 follows task 1 through task 4 in Figure 1) 
were identified logically. In Hoffmann’s heuristic, the sum of a column 𝑖 indicated the number of 
predecessors of task 𝑖. Columns with a sum of zero indicated tasks without predecessors and 
thence top candidates for assignment to the current workstation. Tasks were assigned to 
workstations one at a time going with the columns’ sums in ascending order, with the matrix 
updated after each task assignment. The matrix simplified the solution process, but the algorithm 
tended to concentrate idle times at the later stations (Talbot et al., 1986).  

 

Fig.  2. Precedence diagram (left) and precedence matrix for a 12-task assembly job 

1

2

3

4

5

7

8

9

10

11 12

6

0.20

0.40

0.70

0.10

0.30

0.11

0.32

0.60

0.38

0.50 0.12

0.27

1

2

3

4

5

7

8

9

10

11 12

6

0.20

0.40

0.70

0.10

0.30

0.11

0.32

0.60

0.38

0.50 0.12

0.27



Helal et al …                               Vol 6(1) 2024 : 1-20 

4 
 

In (Moodie, 1964), the precedence matrix was used to represent both task predecessors 
and followers. Unlike Hoffmann’s, Moodie’s matrix included all immediate and non-immediate 
relations. For each row 𝑖 and column 𝑗, an entry of +1 indicated that task 𝑖 precedes task 𝑗, an 
entry of -1 indicated that 𝑖 follows 𝑗, while an entry of 0 indicated no relation. Figure 2 shows 
Moodie’s matrix for the 12-task diagram from Figure 1.  Clearly, the entries below the shaded 
principal diagonal are mirror images of the entries above, but with opposite signs. This is 
redundant information. 

A variant of Moodie’s matrix was also described in which the matrix was split into an 
immediate followers’ matrix and an immediate predecessor’s matrix. These were not square 
matrices; each had columns equal to the maximum number of immediate followers or immediate 
predecessors. The two sub-matrices needed less computer memory than a single complete matrix. 
Moodie (1964) described this matrix as a more effective way to summarize precedence relations 
compared to the precedence diagram, although according to him, the matrix was constructed from 
the diagram. He compared popular balancing heuristics at that time including Hofmann’s matrix 
heuristic, which was the only one used the matrix explicitly as a core component of the heuristic. 
Talbot & Patterson (1984) used the contents of the immediate predecessors’ matrix to provide 
inputs for feasibility checking in an integer programming formulation, but no description was 
given of how it was incorporated. Rashid et al. (2012) also described the matrix as an effective 
way to represent precedence constraints where they used a square matrix as in Moodie’s but only 
immediate predecessors were included on one side of the diagonal.  However, no specific use was 
reported.  

In (Chiang, 1998), the immediate predecessors’ matrix was used to check feasibility in a 
tabu-search heuristic, where a shortest-rout algorithm (Warshall’s algorithm) was employed to 
find the transitive closure matrix through which the non-immediate predecessors were identified. 
Warshall’s algorithm (Warshall, 1962) finds the shortest routes between nodes in directed 
networks. It was called in each iteration of the tabu-search to identify all predecessors of the 
current task, to ensure the feasibility of moving it between stations. This added a second layer of 
search to the tabu-search’ search process and made it computationally more demanding.  

In a similar approach, Nearchou (2007) proposed an evolutionary algorithm and used the 
immediate predecessor’s matrix for feasibility checking. Nearchou described the construction of 
the matrix using a simple algorithm and then utilized Warshall’s algorithm to establish the non-
immediate predecessors. After each trial sequence of tasks was created it was checked against the 
precedence data to remove infeasibility. Hamta et al. (2013) followed Nearchou’s matrix and 
simplified the matrix construction to use a simpler looping algorithm. The precedence data was 
also used to test the trial solutions in a particle swarm algorithm for solving the ALBP with 
sequence dependent setup times.  

In summary, the precedence matrix has been recognized as an effective structure to store 
precedence relations in the ALBP. However, it is not often mentioned explicitly in literature. 
Based on our review, we identified only Nearchou (2007) and Hamta et al. (2013) who provided 
descriptions of how to construct the matrix, based on our review.  

 
2.3 Solving the ALBP 

Although all versions of the ALBP are NP-complete (Boysen et al., 2022), the problem has 
attracted researchers since its first definition, and dozens of exact and heuristic solution methods 
have been introduced. This included optimization methods such as integer programming, dynamic 
programming and branch and bound algorithms, and various implementations of meta-heuristics 
such as tabu search, simulated annealing, and genetic algorithm, and many others. A recent 
comprehensive review can be found in Boysen et al. (2022). In addition, several constructive 
procedures and many simpler priority rules have been utilized to solve the ALBP by generating 
feasible line designs efficiently. The priority rules were recognized for efficiency and flexibility. 
Several surveys of priority rules have been published over the years, see for example Fathi et al. 
(2018), Moreira et al. (2012), Capacho Betancourt (2008), Scholl & Voß (1997), and Talbot et al. 
(1986).  

There are many line balancing priority rules. These simple heuristics rank assembly tasks 
in ascending or descending order of some parameter values, then assign the tasks to the 
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workstations, one at a time, starting with the top-ranked task. The priority rule methods are 
computationally efficient but can only check limited numbers of potential solutions. Among the 
most popular and successful of them is the Ranked Positional Weight (RPW) which was proposed 
by Helgeson & Birnie (1961). RPW assigns each task a weight equal to its processing time plus 
the processing times of all its follower tasks. Tasks are then assigned to the earliest workstation 
with sufficient time to accommodate them, given all predecessors of the task have already been 
assigned to the current or earlier stations. For their simplicity and efficiency, priority rules 
remained interesting, and several researchers have built on them to develop more structured and 
efficient heuristics. Boysen et al. (2022) identified “a stream of research” that developed priority 
rules-based procedures to obtain good feasible solution efficiently for specially characterized line 
balancing problems. RPW was frequently utilized in these efforts, as can be seen in, for example, 
Capacho Betancourt (2008),  Pearce et al. (2019), and Çelik & Arslankaya (2023).  

We utilize popular balancing rules in this work, incorporating them into the proposed 
matrix-based framework. Priority rules develop quick feasible solutions, even for very large 
problems ((Boysen et al., 2022), which aligns with our vision to provide practitioners with simple 
and effective analysis tools. 
 
3. Objectives 

In this work, we propose using the precedence matrix as a foundation for developing 
efficient line balancing frameworks for the simple ALBP. We introduce algorithms to construct 
the precedence matrix in a spreadsheet model, from the core problem data, namely the tasks, their 
processing times, and the immediate precedence relations among them. The matrix is then 
integrated with the selected balancing heuristic. The precedence matrix provides an intuitive and 
effective structure for storing ALBP data, facilitating the estimation of various problem-related 
parameters and indices, which contributes to developing balancing heuristics, and it supports 
efficient executing of the procedures and ensure solution feasibility. 

Selected priority rules for line balancing will be implemented into the spreadsheet model 
to demonstrate its usability and potential. Spreadsheets are inexpensive, powerful data 
manipulation tools that are widely available. Current programming languages (e.g., Python’s 
Openpyxl and Pandas) integrate spreadsheet objects into their libraries. The proposed framework 
is designed to provide industry practitioners with a flexible tool to quickly investigate and develop 
feasible solutions. This aligns with the reported practice by production managers in developing 
line design solutions, as discussed in Section 1. Our goal is to help bridge the gap between 
research and practice. In the following sections, we describe the structure and application of the 
proposed matrix framework. 
 
4. Research Methods 
4.1 Constructing the Precedence Matrix 

 In an ALBP, the minimum required data must include the list of tasks, task processing 
times, and the immediate precedence relations among them. The precedence matrix for a set of 𝑛 
tasks, is the square 𝑛 × 𝑛 matrix, in which the entries; 𝑀$6  at the intersection of row i and column 

j are defined as: 

𝑀$6 = 71 𝑖𝑓	𝑡𝑎𝑠𝑘	𝑖	𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠	𝑡𝑎𝑠𝑘	𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
To simplify, zero entries will be represented by empty matrix cells. The immediate 

precedence relation between tasks 𝑖 and 𝑗 (𝑖, 𝑗 = 1,2,3, … , 𝑛) is represented by the 2-tuple (𝑖, 𝑗), 
which indicates that task 𝑖 precedes task 𝑗. Tasks must be named such that if task 𝑖 precedes task 
𝑗, then 𝑖 is smaller than 𝑗. This ensures all entries are on one side of the principal diagonal line of 
the matrix. In Figure 3, the set of immediate precedence relations for the 12-task network of Figure 
1 are listed on the left. The precedence matrix is shown to the right of Figure 3. The principal 
diagonal line is highlighted in black. Rows and columns are labeled with the task numbers. Row 
1, for example, shows that task 1 is followed by tasks 3, 4, 6, 7, 8, 9, 10, 11, and 12. According 
to the precedence diagram, tasks 3 and 4 are immediate followers, while the rest are non-
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immediate followers of task 1. The immediate followers are highlighted in yellow, while the non-
immediate followers are in grey. The tasks’ processing times are listed to the right and at the 
bottom of the matrix. 

Algorithm 1 follows the work of Hamta et al. (2013) and Nearchou (2007) and uses the 
minimum problem data mentioned above, to construct the precedence matrix into a spreadsheet. 
It also identifies the immediate and non-immediate followers for each task. 

 

Fig. 3. Immediate predecessors relations list (left) and the precedence matrix  
for the 12-task network in Figure 1 

 
4.2 Using the Precedence Matrix 

The precedence matrix, as described, provides efficient support to the analysts for 
calculating the various problem features and indices, in executing line balancing heuristics, and 
in checking the feasibility of task assignments to workstations. The following subsections 
illustrate using the presentence matrix to estimate problem related indices and parameters. For 
better presentation, selected balancing rules are implemented within the spreadsheet model, for 
each of them the rule index is defined in terms of the rows and columns of the matrix. The 
performance of the rules will be compared and evaluated using benchmarking ALBP data.  

 
Algorithm 1: Constructing the Precedence Matrix 

I.  I. Finding the immediate followers of tasks 
1. For each present 2-tuple (𝒊, 𝒋) do: 

a. Set 𝑴𝒊,𝒋 = 1 (add 1 at the intersection of row 𝒊 and column 𝒋)  

b. Stamp the intersection cell as immediate relation cell 
c. Increment the counter of the immediate followers of 𝒊 by 1 
d. Add 𝒋 to the list of followers of 𝒊 

2. Next 2-tuple 
 

II. II. Finding the non-immediate followers of tasks 
3. For each task 𝒊	= 1 to 𝒏 do: 

a. If the number of immediate followers of 𝒊 > 0 then 
i. For each present 2-tuple (𝒋, 𝒌) do: 

1. For each task 𝒋 in (𝒋, 𝒌) where 𝒋 ≠ 𝒊 do: 
a. For each task 𝒇 in the list of followers of 𝒊 do:  

i. If 𝒇 = 𝒋 then 
1. Set 𝑴𝒊,𝒌 = 1 (add 1 at the intersection of row 𝒊 and column 𝒌) 
2. Stamp intersection cell as non-immediate relation cell 

b. Next 𝒇 
2. Next 𝒋 

Immediate Precedence 
Relations ((i, j): i preceds j)

Task 1 2 3 4 5 6 7 8 9 10 11 12 Time

(1, 3), (1, 4) 1 1 1 1 1 1 1 1 1 1 0.20

(2, 4), (2, 5) 2 1 1 1 1 1 1 1 0.40

(3, 6), (3, 7), (3, 8) 3 1 1 1 1 1 1 1 0.70

(4, 8) 4 1 1 1 1 1 0.10

(5, 10) 5 1 1 1 0.30

(6, 9) 6 1 1 1 0.11

(7, 9) 7 1 1 1 0.32

(8, 9), (8,10), (8,11) 8 1 1 1 1 0.60

(9, 11) 9 1 1 0.27

(10, 11) 10 1 1 0.38

(11, 12) 11 1 0.50

- 12 0.12

Time 0.20 0.40 0.70 0.10 0.30 0.11 0.32 0.60 0.27 0.38 0.50 0.12
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ii. Next 2-tuple 
4. Next	𝒊 
5. End 

 
4.2.1 Assessing Difficulty of the ALBP 

Common indicators of the ALBP difficulty include the order strength, flexibility ratio, and 
the WEST ratio. The order strength (𝑂𝑆) is the ratio of the number of precedence relations among 
the tasks to the maximum possible number of relations. If 𝑟 is the number of existing precedence 
relations among 𝑛  tasks, then 𝑂𝑆 = 2𝑟/(2(𝑛 + 1)) . The value 𝑛(𝑛 − 1)/2  is the maximum 
number of possible relations among 𝑛 tasks. The value of 𝑂𝑆 affects the computational time to 
solve the problem; a value close to one implies a highly constrained problem and fewer number 
of alternative solutions (Chutima, 2022; Erel & Sarin, 1998; Mastor, 1970; Talbot et al., 1986). It 
is easier to see the meaning of 𝑂𝑆 with the precedence matrix, where each entry of 1 represents a 
precedence relation. Using Figure 3, 𝑂𝑆 is the sum of all entries in the matrix, divided by half the 
matrix size (above the principal diagonal) excluding the 𝑛 cells on the principal diagonal, which 
have no entries. The matrix size, as a square matrix is 𝑛	𝑥	𝑛 = 𝑛U. Then, 𝑂𝑆 can be given as 
follows in terms of the rows and columns of the matrix: 

 

𝑂𝑆 =
2(∑ ∑ 𝑀$6

-
6./

-
$./ )
𝑛(𝑛 − 1)

 

For the example in Figure 3, OS = 0.697 which is relatively high. The flexibility ratio (𝐹𝑅) 
is the complement of the order strength, calculated as 𝐹𝑅	 = 1 − 𝑂𝑆 . It uses the number of 
missing precedence relations. It indicates the volume of feasible sequences that can be generated 
for a problem. Larger FR values indicate less precedence constraints and more alternative 
solutions to evaluate. 

Another complexity index was described by (Mastor, 1970) which is the average number 
of tasks per workstation, denoted by the WEST ratio. We will call it Task-to-Station Ratio (𝑇𝑆𝑅) 
in this article. When an assembly line uses more workstations, the number of tasks per station 
(𝑇𝑆𝑅) is small and there are fewer combinations of the tasks to assign to stations. In this case, 
balancing heuristics can be faster due to the limited search space, but solutions are more likely to 
include significant idle times. On the other hand, with smaller numbers of workstations, 𝑇𝑆𝑅  
increases and there will be more possible combinations of tasks and alternative solutions. In that 
case, the balancing heuristics will require longer computational times. 𝑇𝑆𝑅 requires the number 
of stations to be known in advance, which makes it more relevant to the Type II problems. The 
lower bound on the number of workstations can be used as an estimate of the line length (Driscoll 
& Thilakawardana, 2001) to use TSR in Type I problems. A lower bound on the number of the 
workstations; 𝑚Z$- is the integer value equal to or greater than the quotient of the total processing 
time and the cycle time, 𝐶 (Capacho Betancourt, 2008), given by:  

 

𝑚Z$- = [
∑ 𝑡$-
$./
𝐶

\
 

 
TSR can then be estimated as follows:  

𝑇𝑆𝑅 = 	
𝑛

]∑ 𝑡$-
$./
𝐶 ^

 

 
4.2.2 Line Balancing with The Priority Rules 

To provide a working prototype of the proposed framework, selected priority rules are 
implemented in the spreadsheet model. The more popular rules according to available reviews 
(Capacho Betancourt, 2008; Fathi et al., 2018; Moreira et al., 2012; Scholl & Voß, 1997; Talbot 
et al., 1986) are included, which are defined below. Using priority rules is meant for simplicity of 
presentation. Besides, the matrix-based analysis framework with priority rules can be an attractive 
tool to practitioners, given the discussion in Section 1, where managers in practice would be 
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satisfied with quick feasible solutions. It should be noted that other, more structured balancing 
heuristics can be integrated with the matrix model well. 
  We utilize the matrix framework to perform a comparison of the priority rules. Ten rules 
are used; the popular RPW-based rules (we call it maximum positional weight for naming 
consistency), the number of followers-based rules, in addition to priority rules using the earliest 
and latest stations that a task can be assigned to and the task slack, are included. In the following 
list of priority rules, their definitions are made in terms of the rows and columns of the precedence 
matrix, where 𝑖 refers to the tasks listed in the rows of the matrix and 𝑗 refers to the tasks listed in 
the columns, where 𝑖 and 𝑗	 = 	1,2, … , 𝑛. 
1. Maximum Number of Followers (MaxF) rule counts the numbers of followers of each task, 

ranks them in descending order, and then assigns tasks to the workstations starting with the 
maximum value. Let 𝐹$ be the set of followers of task 𝑖, then its number of followers; |𝐹$|, is 
the sum of all entries in row 𝑖 in the matrix 

|𝐹$| = , 𝑀$6

-

6.$a/

 

2. Maximum Number of Immediate Followers (MaxIF) rule counts only the immediate 
followers of the task. In the matrix construction algorithm, the immediate and the non-
immediate precedence relations are distinguished from each other. The number of immediate 
followers; |𝐼𝐹$| of 𝑖	is the sum of all entries in row 𝑖 if they are tagged as immediate in the 
matrix:   

|𝐼𝐹$| = , 𝑀$6

-

6.$a/

		𝑖𝑓	𝑀$6	𝑖𝑠	𝑡𝑎𝑔𝑔𝑒𝑑	𝑎𝑠	𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒	
 

3. Maximum Number of Non-Immediate Followers (MaxNIF) rule counts the non-
immediate followers of the task. The number of non-immediate followers; |𝑁𝐼𝐹$|, of task 𝑖	is 
the sum of all entries in row 𝑖, if they are tagged as non-immediate:  

|𝑁𝐼𝐹$| = 	 , 𝑀$6

-

6.$a/

		𝑖𝑓	𝑀$6	𝑖𝑠	𝑡𝑎𝑔𝑔𝑒𝑑	𝑎𝑠	𝑛𝑜𝑛 − 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒	
 

4. Maximum Positional Weight (MaxPW) rule calculates the PW of each task, ranks them in 
descending order, and then assigns tasks to workstations starting with the maximum PW 
value. If 𝐹$ is the set of followers of task 𝑖, then 𝑃𝑊$ = 𝑡$ + ∑ 𝑡gg∈ij

, where 𝑡$ is the process 
time of 𝑖. In the matrix format, 𝑃𝑊$ is equal to the process time of task 𝑖 plus the sum of 
products of row 𝑖 and the row containing the tasks’ process times: 

𝑃𝑊$ = 𝑡$ + , k𝑀$6 × 𝑡6l
-

6.$a/

	
 

5. Maximum Average Positional Weight (MaxAPW) rule calculates the PW of the task 
divided by the number of its followers plus one: 
   

𝑀𝑎𝑥𝐴𝑃𝑊$ =
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

1 + |𝐹$|
=
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

1 + ∑ 𝑀$6
-
6.$a/

 

6. Maximum Positional Weight of Followers (MaxPWF) rule calculates the PW for the task 
but without the task itself:   

𝑃𝑊𝐹$ = , k𝑀$6 × 𝑡6l
-

6.$a/

	
 

7. Maximum Average Positional Weight of Followers (MaxAPWF) rule is similar to the 
previous rule but divided by the number of followers of the task:  
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𝑀𝑎𝑥𝐴𝑃𝑊$ =
∑ k𝑀$6 × 𝑡6l
-
6.$a/

|𝐹$|
=
∑ k𝑀$6 × 𝑡6l
-
6.$a/
∑ 𝑀$6
-
6.$a/

 

8. Minimum Slack of Task (MinSLK) rule calculates slack of each task, ranks the values in 
ascending order, and assigns the tasks to stations starting with the minimum value. The 
minimum slack task is the one having the least flexibility in the assignment to workstations 
and should be assigned first. Let 𝐿$	and  𝐸$	be the latest and earliest stations that the task can 
be assigned to, respectively, then the slack of task 𝑖 is given by: 
 

𝑆𝑙𝑎𝑐𝑘$ = 𝐿$ − 𝐸 $ . 

 
9. Earliest Station for Task (MinEi) rule ranks the tasks in ascending order of 𝐸$	and assigns 

them to stations starting with the minimum value. For a task 𝑖 , 𝐸$ is the first station to which 
the task can be assigned given all its predecessors have been assigned before it. Let 𝑃$ be the 
set of predecessors of task 𝑖, then we have 

 

𝐸$ = [
𝑡6 + ∑ 𝑡gg∈qj

𝐶
\
 

In the matrix structure, the predecessors of a task are those tasks having entries of 1 in the 
task’s column. Using 𝑖 for rows and 𝑗 for columns, then 𝐸$ can be represented as follow:  

 

𝐸6 = r𝑡6 +
∑ k𝑀$6 × 𝑡$l
6s/
$./
𝐶

t
 

10. Latest Station for Task (MinLi) rule ranks tasks in ascending order of 𝐿$	 and assigns them 
to stations starting with the minimum value. For task 𝑖, 𝐿$	is the last station the task can be 
assigned to, such that all its followers can be assigned after it. It assumes knowing the needed 
number of workstations, yet an estimate of the upper bound on the number of workstations 
can be used according to. In Scholl & Voß (1997) an upper bound 𝑚Zuv is given as follows: 

 

𝑚Zuv = 𝑀𝑖𝑛 w𝑛, x
∑ 𝑡$-
$./

𝐶 + 1 − 𝑡Zuv
y + 1, x

2 × ∑ 𝑡$-
$./

𝐶 + 1
y + 1	z

 

The value of 𝐿$ is calculated by (Capacho Betancourt, 2008; Fathi et al., 2018): 
 

𝐿$ = 𝑚Zuv + 1 − [
𝑡$ + ∑ 𝑡gg∈ij

𝐶
\
 

 
In the matrix format, with 𝐹$ as defined earlier, 𝐿$	 is calculated as follows: 
 

𝐿$ = 𝑚Zuv + 1 − [
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

𝐶
\
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Fig.  4. Precedence matrix for 12-task ALBP (top left), values and indices of priority rules and problem parameters, 
and solution using MaxPW rule (bottom right) 

In Figure 4, the precedence matrix of the 12-task example from Figure 1 is shown with 
relevant problem features and priority rules parameters. This was implemented in MS Excel. The 
12-task example was solved using all ten rules, and all achieved 5-station solutions with line 
efficiency of 80%, but different smoothness index values. Best solution was given by MaxPW, 
which gave 0.181 smoothness index: about 25% lower than the others. This solution is shown in 
the lower right part of Figure 4. 
 
4.2.3 Checking Task Assignment Feasibility with The Precedence Matrix 
 Solving the ALBP involves three main steps: 
1. Developing a sequence of tasks, which does not violate any precedence constraints. 
2. Assigning the tasks to workstations, in order of tasks in the sequence, without exceeding the 

cycle time on any workstation. 
3. Improving the assignments by transferring and/or swapping tasks between workstations, 

without violating the cycle time limit or any of the precedence constraints. 
The priority rules implement the first two steps. The third is usually the focus of the search-

based heuristics (genetic algorithm, tabu search, etc.), which need to start with an initial solution, 
commonly developed with some priority rules. The sequence is a list of tasks, ordered in 
ascending or descending order based on some criteria. Sequences with no violations of the 
precedence constraints are feasible consequences, and the assignment can be as simple as dividing 
the sequence into sub-sequences, each with a total time less than or equal to the cycle time. The 
number of subsequences will be the number of workstations. 

To illustrate, the values for the MaxPW and MinSLK rules for our 12-task example are 
given in Table 1, ordered from left to right in descending order for MaxPW and ascending order 
for MinSLK. Consider task 8, the precedence matrix shows tasks 1,2,3 and 4 as its predecessors, 
listed in column 8 (see Figure 4, top left). For MaxPW in Table 1, all four predecessors have 
higher positional weights and are ranked before task 8 in the sequence. Then the position of task 
8 in the sequence is feasible. This can be shown true for all tasks in this sequence. Then the 
MaxPW sequence is feasible. For MinSLK, task 8 is positioned 7th, and since task 4 is 10th, not 
all predecessors of task 8 are ranked before it and hence the sequence is infeasible. Assigning 
tasks to workstations using this infeasible sequence may be complicated. 

 
Table 1 - Task sequences based on MaxPW and MinSLK rules for the 12-task example 

Position 1 2 3 4 5 6 7 8 9 10 11 12 

MaxPW 3.30 3.00 2.67 1.97 1.87 1.30 1.21 1.00 1.00 0.89 0.62 0.12 

Tasks 1 3 2 4 8 5 7 6 10 9 11 12 
MinSLK 0 0 0 1 1 1 1 1 1 2 2 2 

Tasks 1 11 12 2 3 7 8 9 10 4 5 6 
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Algorithm 2 can be used to check the feasibility of a sequence, based on the precedence 
matrix. As explained, the position of a task in a sequence is feasible if all its predecessors are 
ranked ahead of it. Algorithm 2 checks feasibility by considering each task in the sequence and 
confirming that all its predecessors have already been ranked before it in the sequence. In the 
matrix format, the predecessors of a task 𝑗 are row tasks having entries of 1 in column 𝑗. 

 
4.2.4 Feasible Assignment of Tasks to WorkStation 

Algorithm 3 is an efficient procedure to assign assembly tasks to the workstations while 
ensuring the feasibility of the assignments, by using the precedence matrix’s rows and columns 
to check the task predecessors and followers. It has been used to execute the priority rules 
described earlier. It can be incorporated into the execution of more advanced balancing heuristics, 
whenever an assignment action is to be made.  

 
Algorithm 2: Checking the feasibility of task sequences using the precedence matrix 

1. For each position 𝒌	 = 	𝟏	𝒕𝒐	𝒏 in the task sequence, do: 
a. Set 𝒋 equal the task in position 𝒌 
b. For each row 𝒊	 = 	𝟏	𝒕𝒐	𝒋	– 	𝟏, do: 

i. If  𝑴𝒊𝒋 = 𝟏 then: 
1. If 𝒌	 = 	𝟏 then 

a. Sequence is infeasible 
b. End 

2. 𝑳𝒆𝒕	𝑹	 = 	𝟎 
3. For each position 𝒍	 = 	𝟏	𝒕𝒐	𝒌	– 	𝟏 in the sequence, do: 

a. Set 𝒓 equal to the task in position 𝒍 
b. If 𝒊	 = 	𝒓 then 𝑹	 = 	𝑹 + 𝟏 

4. Next 𝒍 
5. If 𝑹 ≠ 𝟏 then 

a. Sequence is infeasible 
b. End 

c. Next 𝒊 
2. Next 𝒌 
3. End 

While assigning tasks to a workstation, if a candidate task cannot be assigned because of 
workstation time limit or a predecessor that could not be assigned yet, then the task is skipped, 
and the next in sequence is considered. Skipping tasks can cause more infeasibility issues. In 
Algorithm 3, the assignment starts with the top-ranked task, and when a task is assigned to a 
station it is removed from the sequence. If tasks are skipped, the assignment process continues 
until any later task could be assigned, then the process returns to the current top of the sequence, 
to reattempt the skipped tasks. This may increase computational efforts, but it is an accurate 
execution of the ranked sequence, since skipped tasks still retain higher priority than.  
 

Algorithm 3: Assignment of tasks to workstations and checking for feasibility at each 
attempt 
1. Initialize the list of already assigned tasks 
2. Let the current open station be station 𝒌; set 𝒌	 = 	𝟏 
3. Set station time of 𝒌; 𝑻𝒌 = 𝟎 
4. Set 𝒍 = 𝟏 
5. Let 𝒋	 = candidate task; task ranked number 𝒍 in sequence, its process time is 𝒕𝒋 
6. If 𝑻𝒌 < 𝒕𝒋 then:  

a. If 𝒋 is not last in sequence, then set 𝒍	 = 	𝒍	 + 	𝟏 and Go To Step 5 
b. Set 𝒌	 = 	𝒌 + 𝟏 and Go To Step 3 

7. For each row 𝒊 = 𝟏	𝒕𝒐	𝒋 − 𝟏, do: 
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a. If 𝑴𝒊𝒋 = 𝟏 then: 
i. For each task 𝒓 in the list of already assigned tasks, do: 

1. If 𝒊	 = 	𝒓 then Go To Step 8 
ii. Next 𝒓 

iii. Mark task 𝒊 as not yet assigned to a station 
iv. Mark task 𝒋 as cannot be assigned to current open station 
v. Let 𝒍	 = 	𝒍	 + 	𝟏 and Go To step 5 

8. Next 𝒊 
9. Assign 𝒋 to current open station 𝒌 
10. Let 𝑻𝒌 = 𝑻𝒌 +	𝒕𝒊		 
11. Append 𝒋 the list of the already assigned tasks 
12. Delete 𝒋 from the ranked sequence  
13. If the length of the ranked sequence > 1 then Go To Step 4 
14. End 

 
5. Computational Experiments 

 The proposed precedence matrix model has been implemented in MS Excel and used to 
compare the priority rules listed earlier, using benchmarking assembly line balancing problems. 
The matrix for each problem was constructed using Algorithm 1. The assignment of tasks to 
workstations was carried out using Algorithm 3. All quantities defined in previous sections in 
terms of the rows and columns of the matrix were implemented and used. The benchmarking data 
was obtained from the Assembly Line Balancing webpage (Boysen et al., 2021), which hosts sets 
of benchmarking data for line balancing and scheduling applications. The data is available for 
free, for research and non-commercial purposes. The datasets based on Otto et al. (2013) were 
picked. For the current presentation, we used only small size problems of 20 tasks. The dataset 
includes 525 problems, which were generated with desired order strength (𝑂𝑆) values of 0.20, 
0.60, and 0.90. The actual 𝑂𝑆 values reported on the data page are as follows, which matched our 
calculations with the matrix model: 
• Desired 𝑂𝑆 of 0.20: 225 problems with actual 𝑂𝑆 ranging from 0.14 to 0.30. 
• Desired 𝑂𝑆 of 0.60: 225 problems with actual 𝑂𝑆 ranging from 0.50 to 0.65. 
• Desired 𝑂𝑆 of 0.90: 75 problems with actual 𝑂𝑆 ranging from 0.80 to 0.85. 

All problems were indicated to have been solved optimally, except for only eight of them, 
and the number of workstations in the optimum solutions was reported. The dataset also includes 
the lower bound on the number of workstations for each problem. We used this lower bound to 
calculate 𝑇𝑆𝑅 for each problem, which will be used in analyzing the results. The values of TSR 
varied from 1.25 to 10.0. Since the number of tasks is fixed, then the variability is attributed to 
the number of needed workstations, which depends on the task process times. For the analysis of 
the results, the 𝑇𝑆𝑅 values were classified into three levels: 
• Low 𝑇𝑆𝑅: less than 3.00: 182 problems with 𝑂𝑆 from 0.14 to 0.84 
• Medium 𝑇𝑆𝑅: from 3.00 to 5.00: 177 problems with 𝑂𝑆 from 0.15 to 0.85 
• High 𝑇𝑆𝑅: more than 5.00: 166 problems with 𝑂𝑆 from 0.15 to 0.84 

 
The common line balance performance metrics, line efficiency and smoothness index, are 

used to evaluate the performance of the balancing rules. The line efficiency (𝐿𝐸) is the ratio of 
the total work content of the assembly job to the time available on all needed workstations. Higher 
values 𝐿𝐸 are better. It is calculated as: 

𝐿𝐸 =
∑ 𝑡$-
$./
𝑚 × 𝐶

 

 
The smoothness index (SI) measures how leveled the task distribution among the 

workstations. A smaller 𝑆𝐼 value indicates more nearly equal station times, which implies fair 
work loading and minimized idle times. It is defined as follows where 𝑇Zuv  is the longest 
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workstation time among all workstations, 𝑇�  the time of workstation 𝑘, and 𝑚 the number of 
stations in the solution.  

𝑆𝐼 = �,(𝑇Zuv − 𝑇�)U
Z

�./

 

 
6. Results and Discussions  

All the work was implemented in MS Excel. The performance of the balancing rules was 
compared for the line efficiency and the smoothness index, considering the different levels of 𝑂𝑆 
and 𝑇𝑆𝑅 . In addition, since optimal solutions of the test problems have been reported, we 
calculate the percentage of problems that could be solved optimally using the priority rules. This 
measures the ability of the rules to find optimal solutions. This is meant to assess the attractiveness 
of the proposed matrix model to practitioners. Obtaining optimal solutions efficiently should be 
of great value to practitioners. The results are discussed in the following subsections.  

  
6.1 Ability to Find Optimum Solutions  

All tested balancing priority rules could find solutions with the optimum number of 
workstations, or the optimal number plus one extra station, in more than 90% of the problems and 
95% for some of them. As in Figure 5, MaxPW performed relatively better than the others; finding 
solutions with optimum number of stations (0 extra) in 71% of the problems followed by 
MaxAPW at 65.8% of all problems. Achieving optimal solutions for an average of about 60% of 
the problems is a satisfying performance for these simple balancing methods. This is encouraging 
for analysts interested in collecting insights on potential alternative line designs efficiently with 
the proposed spreadsheet precedence matrix framework.  

 

Fig. 5. Ability to find solutions with optimum number of workstations or optimum +1 
With respect to 𝑂𝑆, Figure 6 shows the fractions of problems that could be solved with 

optimum number of stations. MaxPW can roughly be considered better than the others. There is 
no clear trend for the impact of 𝑂𝑆 on the performance. However, it can be noticed that more than 
half of the rules could achieve better results for the 0.9 𝑂𝑆 than for the lower 𝑂𝑆 values. Higher 
𝑂𝑆 implies fewer alternatives in assigning tasks to stations, and hence the rule-based methods can 
have better chances to perform well, since they only evaluate limited number of solutions. 
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Fig. 6. Ability to find solutions with optimum number of workstations vs. order strength 
With respect to the impact of 𝑇𝑆𝑅 , Figure 7 shows a significantly lower percentage 

(average of about 36%) of optimal solutions for the smaller 𝑇𝑆𝑅 values, as compared to around 
76% for medium 𝑇𝑆𝑅 , and 72% for higher 𝑇𝑆𝑅  values. Smaller 𝑇𝑆𝑅  values imply a larger 
number of workstations, and fewer tasks at each station. Thus, the priority rules, which are already 
limited in their search capabilities, are having even less flexibility to combine the tasks on the 
workstations. Although the differences are not significant, the rules generally perform better for 
medium than for higher 𝑇𝑆𝑅. Higher 𝑇𝑆𝑅 can be challenging for priority rules because of the 
increased flexibility, since the rules can evaluate a limited number of solutions. However, more 
investigations using larger problems are needed to confirm these observations.  

 

Fig. 7. Ability to find solutions with optimum number of workstations vs. task-to-station ratio 
Although the current comparison is limited to small-sized problems, it can be argued, for 

this problem size, that 𝑇𝑆𝑅 which is a function in number of tasks and number of workstations, 
may provide a better indicator of the expected solution quality than the popular 𝑂𝑆, which uses 
the number of precedence relations among the tasks. 
 
6.2 Line Efficiency  

Figure 8 compares the achieved line efficiency (𝐿𝐸) with respect to 𝑂𝑆. All the rules 
showed equivalent performance, achieving around 85% efficiency. It is also noticeable that the 
higher the 𝑂𝑆 the lower the efficiency. Lower efficiency means more workstations are needed 
and higher 𝑂𝑆  implies difficulty to assign tasks to workstation dure to stronger precedence 
constraints. This is consistent for all rules, although the differences are insignificant. 𝐿𝐸 decreases 
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within 5% range with 𝑂𝑆 increasing from 0.2 to 0.9. MaxPW, also showed marginally higher 
efficiency than other rules for all 𝑂𝑆 values.  

For 𝑇𝑆𝑅  (Figure 9), smaller 𝑇𝑆𝑅  values allowed 𝐿𝐸  of less than 80%; between 77% 
(MinEi) to 79.8% (MaxPW). Higher 𝑇𝑆𝑅  allowed higher 𝐿𝐸  results, roughly from 86.1% to 
90.3% (MaxPW). There is a consistent trend that higher 𝑇𝑆𝑅 leads to higher efficiency for all 
rules. Higher 𝑇𝑆𝑅 indicates fewer workstations, which directly impacts the efficiency level. This, 
again, suggests that 𝑇𝑆𝑅 can be more indicative of the expected solution quality and length of the 
line, than 𝑂𝑆. It is worth noting that, TSR is calculated based on estimated lower bond of the 
number of workstations, while final solutions often require more stations than the lower bound. 
In fact, an optimum solution can be defined as the one using the minimum number of 
workstations, which is estimated by the lower bound value. Despite this, TSR appears to be a 
better predictor of solution quality than OS.  

 

Fig.  8. Achievable line design efficiency vs. order strength 
 

Fig.  9. Achievable line design efficiency vs. task-to-station-ratio 
 
6.3 Balance Smoothness Index 

Figure 10 compares the achieved smoothness index (𝑆𝐼) with respect to 𝑂𝑆. All rules are 
again performing similarly. Higher 𝑂𝑆 leads to relatively higher 𝑆𝐼 values. Higher 𝑂𝑆 implies 
more precedence relations and hence difficulty assigning tasks to stations. This can lead to using 
more workstations, making it harder to level the station times. Higher OS was also associated 
with lower 𝐿𝐸.  Lower 𝑆𝐼 is desirable as it indicates more balanced task assignments.  

With respect to 𝑇𝑆𝑅 , Figure 11 shows significant differences in performance for the 
different 𝑇𝑆𝑅 levels. Lower 𝑇𝑆𝑅 led to more than double the 𝑆𝐼 values compared to the higher 
𝑇𝑆𝑅. Low 𝑇𝑆𝑅 means larger numbers of stations and fewer tasks at each station. In such cases, 
the solutions are expected to have significant idle times. This supports that 𝑇𝑆𝑅 can be a better 
predictor of the assembly line balancing solution quality than 𝑂𝑆.  
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Fig.  10. Achievable smoothness index vs. order strength 
 

 

Fig.  11. Achievable smoothness index vs. task-to-station ratio 
In summary, this limited comparison of the balancing priority rules was meant to 

demonstrate the use of the precedence matrix-based framework. The ability of simple priority 
rules to achieve optimal solutions is encouraging to practitioners who prefer to have quick feasible 
solutions, which appear to be a common attitude in practice as discussed in Section 1. The 
proposed framework can provide them with efficient and inexpensive tools to perform the 
analysis. With simple priority rules, there are still chances to find optimal solutions efficiently.  

The results of the comparison show that all tested priority rules performed similarly in 
general, with MaxPW slightly outperforming the others. The better performance of the positional 
weight rule is consistent with previous studies, which have usually found the positional weight to 
be an effective rule than other rules.  
Other insights can also be drawn based on the results of the comparison. The 𝑇𝑆𝑅 appears to be 
a more effective indicator of the performance of the balancing rules than OS. The number of 
workstations and the number of tasks (e.g., as in 𝑇𝑆𝑅) can be more effective than the popular 
order strength; 𝑂𝑆, which is a function of the number of precedence relations and number of tasks, 
in assessing problem complexity. Both 𝑂𝑆 and 𝑇𝑆𝑅 are functions of the number of tasks. 𝑇𝑆𝑅 
uses the number of workstations, which is related to the solution, while 𝑂𝑆 uses the number of 
precedence relations which are related to the problem inputs. It can be argued that the number of 
workstations, or estimates of the same, would be important in defining effective measures of 
performance and objective functions for simple ALBP. However, more comprehensive 
comparisons are needed to evaluate this argument. 
 
7. Conclusion  

This article proposes the use of the precedence matrix as a foundation for the development 
of efficient analysis frameworks for the simple assembly line balancing problem (ALBP). We 
have described the implementation of the precedence matrix-based framework in a spreadsheet 
model, leveraging the cost-effectiveness and robust data manipulation capabilities of the 
spreadsheet applications. The matrix model offers a straightforward organization of the line 
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balancing data for analysis purposes and provides a simple and effective tool for guiding the 
development of feasible assembly line design solutions. It supports two key components in 
developing balancing procedures: managing the inputs for solution procedures and ensuring 
feasible solutions. The proposed matrix framework is flexible and can be integrated with various 
balancing methods. In this work, we utilized simple priority rules for line balancing within the 
spreadsheet model. The outcomes demonstrated an efficient and cost-effective tool for production 
managers to evaluate potential line designs. The goal of this work was to help bridge the gap 
between research and practice in the area of assembly line balancing.    

We introduced algorithms for constructing the precedence matrix from core balancing 
problem data and for using its contents to assign assembly tasks to workstations, resulting in 
feasible line designs. The proposed framework is easily extensible, allowing for the inclusion of 
additional performance measures and problem indicators, defined based on the rows and columns 
of the matrix.  

A comparison of the performance of balancing priority rules was conducted using the 
matrix model. The findings indicated that the balancing rules included could achieve optimal 
solution in more than 60% of the test problems. No significant differences in performance were 
observed among them, yet the positional weight-based rules showed relatively better performance 
consistently. As discussed earlier, production managers often depend on their experiences and 
intuition to quickly develop feasible solutions. The proposed matrix model with the simple 
balancing rules has the potential to fit their needs, offering managers the flexibility to select the 
rules that best align with their specific operational goals. Other advanced balancing methods could 
be used as well. 

In addition, the results of the comparison suggest that the task-to-station ratio (𝑇𝑆𝑅), which 
is a function in number of workstations and number of tasks, can be a more reliable indicator of 
ALBP complexity and predictor of expected solution quality than the popular order strength (𝑂𝑆), 
which is a function in number of tasks and precedence relations among them. This implies that 
more emphasis should be placed on the number of workstations in developing performance 
metrics and objective functions for the line balancing problem. Nonetheless, more investigations 
are required to substantiate these arguments.  
Future developments of the matrix framework may involve developing the matrix structure 
further to include more than two dimensions, allowing more information to be included in addition 
to the precedence relations. Other balancing approaches may also be included. This will enable 
the model to support other versions of the ALBP and provide a more nuanced and comprehensive 
approach to assembly line balancing. 
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