
 Journal of Applied Engineering and Technological Science
 Vol 6(1) 2024: 1-20

1

ON THE ASSEMBLY LINE BALANCING PROBLEM: A SIMPLIFIED
PERSPECTIVE WITH THE PRECEDENCE MATRIX

Magdy Helal1*, Kaushik Nag2, Rifat Ozdemir3
College of Engineering and Technology, American University of the Middle East, Kuwait
magdy.helal@aum.edu.kw

Received: 8 July 2024, Revised: 7 October 2024, Accepted: 9 October 2024
*Corresponding Author

ABSTRACT
The assembly line balancing problem (ALBP) has been an attractive research topic for decades, but the
industrial application of the research findings remains limited. This can be attributed to the complexity of
solution methods, restrictive assumptions, and the numerous variants of the problem in real-world settings.
This article proposes using the precedence matrix as a foundation for developing efficient analysis
frameworks for ALBP. We introduce algorithms for constructing the precedence matrix and using it to
guide the development of feasible assembly line designs. Implemented in a spreadsheet model, the matrix
framework provides a straightforward tool for organizing the balancing problem data, managing inputs to
balancing heuristics, and ensuring feasible solutions. It is flexible and can be integrated with various
balancing methods. In this work, we utilized simple priority rules for line balancing to demonstrate the
potential of the matrix model. A performance comparison of the balancing rules showed that optimal
solutions were achieved in over 60% of the test problems. The results demonstrate that the proposed matrix
model is an efficient tool for production managers to evaluate potential line designs. The goal of this work
is to help bridge the gap between research and practice in assembly line balancing.
Keywords: Assembly Line Balancing, Precedence Matrix, Spreadsheets, Priority Rules

1. Introduction

The assembly line is a flow production system where products are built on a series of
workstations, with each station performing a partial set of tasks needed to complete the product.
Assigning the tasks to the workstations is constrained by a set of precedence relations, which state
the required technological order among the tasks. Each workstation is allocated a time window to
perform its assigned tasks, that imposes an additional constraint. This time window, determined
based on the required production rate, is commonly called the cycle time. Given the precedence
constraints and the required cycle time, the goal is to distribute all the tasks to workstations such
that the total time at each station does not exceed the cycle time, all precedence constraints are
satisfied, and the number of needed workstations is minimized. This is known as the assembly
line balancing problem (ALBP). It is a nonpolynomial (NP) hard combinatorial optimization
problem (Ahmadi & van der Rhee, 2023; Lapierre et al., 2006) for which exact mathematical
solution procedures become interactable as the number of assembly tasks increases.

The ALBP was characterized during the 1950s and has been a popular research topic since
then. Assembly lines are used in mass production systems, e.g., for the assembly of consumer
electronics, appliances and, most famous of all, the assembly of cars. In fact, the first assembly
line was developed by Ford more than a century ago (Nicholas, 2018). Line balancing is crucial
in the industrial sector as it directly impacts production efficiency, resources utilization and the
overall operational performance of the organization (Hu et al., 2015; Rahman et al., 2023) and is
key for sustainable competitiveness in a fast-paced industrial environment.

The literature on ALBP solution methods and system configurations is extensive. There is
a good number of surveys on the line balancing, see for example Boysen et al. (2022), Jiao et al.
(2021), Eghtesadifard et al. (2020), Chutima (2020), and Battaïa & Dolgui (2013). However, there
exists a considerable gap between the academic discussions and practical applications in the line
balancing area (Boysen et al., 2022; Katiraee et al., 2023; Pearce et al., 2019). Although many
exact solution methods and advanced heuristic algorithms are available, simpler solution
approaches are more commonly used in industry (Gonzales-Rodriguez, 2022). A review
(Chutima, 2020) found that, between 2014 and 2018, only around 13% of research referenced
real-world industry applications of line balancing techniques. It was similar situations during

Helal et al … Vol 6(1) 2024 : 1-20

2

1970s and 1980s (Boysen et al., 2022; Pearce et al., 2019). Based on their field experiences,
Boysen et al. (2022) stated that only a small percentage of companies applied the advanced
balancing procedures. They considered that an “ongoing challenge” for the line balancing
research efforts. In addition, human workers and manual operations are common on assembly
lines (Ozdemir et al., 2021; Şahin & Kellegöz, 2024; Sotskov, 2023) and process managers still
relay on their experiences in making decisions regarding assembly line designs, which may
sometimes lack proper validation (Manoria et al., 2012; Rahman et al., 2023).

 Pearce et al. (2019) argued that the limited implementation of balancing algorithms in
industry could be attributed to management’s approval of good feasible solutions instead of
seeking optimal ones due to computational difficulties, not knowing of theoretical algorithmic
methods, financial resource limitations, and, sometimes, organizational resistance to change. The
numerous possibilities in the assembly line settings and the restrictive assumptions in the solution
methods may make it harder to fit theoretical solutions to the real-world applications (Katiraee et
al., 2023; Pearce et al., 2019). The previously mentioned have counted dozens of variants of the
ALBP, categorized by line layout, product models, task times variability, problem objectives,
modes of operations, and other considerations.

Limited industrial applications will further widen the gap between research and practice.
The line balancing problem will continue to get more complex with the advances in
manufacturing technologies and the introduction of more constraints and objectives (Ahmadi &
van der Rhee, 2023; Chutima, 2022; Schlueter & Ostermeier, 2022). We argue that there is a real
need to develop simpler, more practical analysis frameworks to support practitioners in designing
assembly lines. In line with that, this article proposes using the precedence matrix as a foundation
for developing intuitive approaches to studying the ALBP. The precedence matrix is a storage
structure of precedence relations data in a way that facilitates the estimation of many problem-
related indices and features. We introduce algorithms for constructing the precedence matrix and
using it to guide the balancing heuristics in developing feasible task assignments to the
workstations. The matrix model can be adopted in the development of balancing heuristics to
simplify the process and manage the inputs to the execution of the heuristics. We also describe a
spreadsheet implementation of the precedence matrix framework, integrated with selected
balancing rules, to demonstrate its potential.

2. Literature Review
2.1 The Assembly Line Balancing Problem

 The ALBP is traditionally categorized into two basic types. Type I seeks to determine the
minimum number of needed workstations to perform the assembly job, given the required
production rate (cycle time). Type II seeks to determine the highest production rate (minimum
cycle time) to perform the assembly job on a given set of workstations. Type I is more common
in research, and it is the basic formulation, whereas Type II problems can be approached by using
Type I solution methods in an iterative fashion (Bao et al., 2023; Fathi et al., 2018; Lapierre et
al., 2006). Type I problem implies that a new assembly line is to be designed to produce a new
product, whereas Type II assumes an existing line that needs to be modified to accommodate
production or design changes. The basic objective function of the problem is defined as follows,
where 𝑚 is the number of workstations, 𝐶 cycle time, 𝑡$	processing time of task 𝑖 , and 𝑛 the
number of assembly tasks:

𝑀𝑖𝑛	𝑍 = 	𝑚	𝐶 −	,𝑡$	

-

$./

Since the sum of processing times is constant, optimizing the objective function can be
approached by minimizing the number of stations for a given cycle time (Type I) or minimizing
the cycle time for a given number of stations (Type II). In both cases, optimizing the objective
function is equivalent to minimizing total idle time on the workstations (Erel & Sarin, 1998).
When the sum of task times at each station is equal, the line is considered balanced. The total time
at each station must be less than or equal to the required cycle time. A balanced assignment of
tasks to workstations eliminates bottlenecks and contributes to achieving smoother workflow and

Helal et al … Vol 6(1) 2024 : 1-20

3

higher efficiency, that leads to better cost performance and higher levels of leanness in the system
(Nicholas, 2018).

Precedence relations are hard constraints that must be satisfied. They are the main
characteristic of the ALBP. For 𝑛 tasks in an assembly job, with 𝑟 precedence relations among
them, there are 𝑛!/2𝑟 different task sequences that need to be evaluated, which is a prohibitive
large number in most industrial problems (Erel & Sarin, 1998). Precedence relations can be
represented graphically by the precedence diagram, which is a directed graph with nodes as tasks,
and arrows as precedence relations. The precedence diagram was first described by Salveson
(1955) and Jackson (1956) and used for manual solutions. While it is used for illustration purposes
in textbooks and some research articles, solving the balancing problem directly on the diagram
gets impractical as the problem size increases. Figure 1 shows the precedence diagram for a 12-
task assembly job. Processing times of each task are shown on the top of each node.

Fig. 1. Precedence diagram for a 12-task assembly job

2.2 The Precedence Matrix

Alternatively, the precedence relations can be stored in matrix format. Organizing the
precedence relations in a matrix format was utilized by some researchers to develop balancing
heuristics. Hoffmann’s heuristic (Hoffmann, 1963) used a matrix that contained an entry of 1 if
there was an immediate precedence relation between two tasks, and 0 otherwise. It was a square
matrix of zeros and ones, with the number of rows and columns equal to the number of tasks.
Only immediate relations (e.g., task 4 immediately follows task 1 in Figure 1) were indicated on
the matrix while non-immediate relations (e.g., task 8 follows task 1 through task 4 in Figure 1)
were identified logically. In Hoffmann’s heuristic, the sum of a column 𝑖 indicated the number of
predecessors of task 𝑖. Columns with a sum of zero indicated tasks without predecessors and
thence top candidates for assignment to the current workstation. Tasks were assigned to
workstations one at a time going with the columns’ sums in ascending order, with the matrix
updated after each task assignment. The matrix simplified the solution process, but the algorithm
tended to concentrate idle times at the later stations (Talbot et al., 1986).

Fig. 2. Precedence diagram (left) and precedence matrix for a 12-task assembly job

1

2

3

4

5

7

8

9

10

11 12

6

0.20

0.40

0.70

0.10

0.30

0.11

0.32

0.60

0.38

0.50 0.12

0.27

1

2

3

4

5

7

8

9

10

11 12

6

0.20

0.40

0.70

0.10

0.30

0.11

0.32

0.60

0.38

0.50 0.12

0.27

Helal et al … Vol 6(1) 2024 : 1-20

4

In (Moodie, 1964), the precedence matrix was used to represent both task predecessors
and followers. Unlike Hoffmann’s, Moodie’s matrix included all immediate and non-immediate
relations. For each row 𝑖 and column 𝑗, an entry of +1 indicated that task 𝑖 precedes task 𝑗, an
entry of -1 indicated that 𝑖 follows 𝑗, while an entry of 0 indicated no relation. Figure 2 shows
Moodie’s matrix for the 12-task diagram from Figure 1. Clearly, the entries below the shaded
principal diagonal are mirror images of the entries above, but with opposite signs. This is
redundant information.

A variant of Moodie’s matrix was also described in which the matrix was split into an
immediate followers’ matrix and an immediate predecessor’s matrix. These were not square
matrices; each had columns equal to the maximum number of immediate followers or immediate
predecessors. The two sub-matrices needed less computer memory than a single complete matrix.
Moodie (1964) described this matrix as a more effective way to summarize precedence relations
compared to the precedence diagram, although according to him, the matrix was constructed from
the diagram. He compared popular balancing heuristics at that time including Hofmann’s matrix
heuristic, which was the only one used the matrix explicitly as a core component of the heuristic.
Talbot & Patterson (1984) used the contents of the immediate predecessors’ matrix to provide
inputs for feasibility checking in an integer programming formulation, but no description was
given of how it was incorporated. Rashid et al. (2012) also described the matrix as an effective
way to represent precedence constraints where they used a square matrix as in Moodie’s but only
immediate predecessors were included on one side of the diagonal. However, no specific use was
reported.

In (Chiang, 1998), the immediate predecessors’ matrix was used to check feasibility in a
tabu-search heuristic, where a shortest-rout algorithm (Warshall’s algorithm) was employed to
find the transitive closure matrix through which the non-immediate predecessors were identified.
Warshall’s algorithm (Warshall, 1962) finds the shortest routes between nodes in directed
networks. It was called in each iteration of the tabu-search to identify all predecessors of the
current task, to ensure the feasibility of moving it between stations. This added a second layer of
search to the tabu-search’ search process and made it computationally more demanding.

In a similar approach, Nearchou (2007) proposed an evolutionary algorithm and used the
immediate predecessor’s matrix for feasibility checking. Nearchou described the construction of
the matrix using a simple algorithm and then utilized Warshall’s algorithm to establish the non-
immediate predecessors. After each trial sequence of tasks was created it was checked against the
precedence data to remove infeasibility. Hamta et al. (2013) followed Nearchou’s matrix and
simplified the matrix construction to use a simpler looping algorithm. The precedence data was
also used to test the trial solutions in a particle swarm algorithm for solving the ALBP with
sequence dependent setup times.

In summary, the precedence matrix has been recognized as an effective structure to store
precedence relations in the ALBP. However, it is not often mentioned explicitly in literature.
Based on our review, we identified only Nearchou (2007) and Hamta et al. (2013) who provided
descriptions of how to construct the matrix, based on our review.

2.3 Solving the ALBP

Although all versions of the ALBP are NP-complete (Boysen et al., 2022), the problem has
attracted researchers since its first definition, and dozens of exact and heuristic solution methods
have been introduced. This included optimization methods such as integer programming, dynamic
programming and branch and bound algorithms, and various implementations of meta-heuristics
such as tabu search, simulated annealing, and genetic algorithm, and many others. A recent
comprehensive review can be found in Boysen et al. (2022). In addition, several constructive
procedures and many simpler priority rules have been utilized to solve the ALBP by generating
feasible line designs efficiently. The priority rules were recognized for efficiency and flexibility.
Several surveys of priority rules have been published over the years, see for example Fathi et al.
(2018), Moreira et al. (2012), Capacho Betancourt (2008), Scholl & Voß (1997), and Talbot et al.
(1986).

There are many line balancing priority rules. These simple heuristics rank assembly tasks
in ascending or descending order of some parameter values, then assign the tasks to the

Helal et al … Vol 6(1) 2024 : 1-20

5

workstations, one at a time, starting with the top-ranked task. The priority rule methods are
computationally efficient but can only check limited numbers of potential solutions. Among the
most popular and successful of them is the Ranked Positional Weight (RPW) which was proposed
by Helgeson & Birnie (1961). RPW assigns each task a weight equal to its processing time plus
the processing times of all its follower tasks. Tasks are then assigned to the earliest workstation
with sufficient time to accommodate them, given all predecessors of the task have already been
assigned to the current or earlier stations. For their simplicity and efficiency, priority rules
remained interesting, and several researchers have built on them to develop more structured and
efficient heuristics. Boysen et al. (2022) identified “a stream of research” that developed priority
rules-based procedures to obtain good feasible solution efficiently for specially characterized line
balancing problems. RPW was frequently utilized in these efforts, as can be seen in, for example,
Capacho Betancourt (2008), Pearce et al. (2019), and Çelik & Arslankaya (2023).

We utilize popular balancing rules in this work, incorporating them into the proposed
matrix-based framework. Priority rules develop quick feasible solutions, even for very large
problems ((Boysen et al., 2022), which aligns with our vision to provide practitioners with simple
and effective analysis tools.

3. Objectives

In this work, we propose using the precedence matrix as a foundation for developing
efficient line balancing frameworks for the simple ALBP. We introduce algorithms to construct
the precedence matrix in a spreadsheet model, from the core problem data, namely the tasks, their
processing times, and the immediate precedence relations among them. The matrix is then
integrated with the selected balancing heuristic. The precedence matrix provides an intuitive and
effective structure for storing ALBP data, facilitating the estimation of various problem-related
parameters and indices, which contributes to developing balancing heuristics, and it supports
efficient executing of the procedures and ensure solution feasibility.

Selected priority rules for line balancing will be implemented into the spreadsheet model
to demonstrate its usability and potential. Spreadsheets are inexpensive, powerful data
manipulation tools that are widely available. Current programming languages (e.g., Python’s
Openpyxl and Pandas) integrate spreadsheet objects into their libraries. The proposed framework
is designed to provide industry practitioners with a flexible tool to quickly investigate and develop
feasible solutions. This aligns with the reported practice by production managers in developing
line design solutions, as discussed in Section 1. Our goal is to help bridge the gap between
research and practice. In the following sections, we describe the structure and application of the
proposed matrix framework.

4. Research Methods
4.1 Constructing the Precedence Matrix

 In an ALBP, the minimum required data must include the list of tasks, task processing
times, and the immediate precedence relations among them. The precedence matrix for a set of 𝑛
tasks, is the square 𝑛 × 𝑛 matrix, in which the entries; 𝑀$6 at the intersection of row i and column

j are defined as:

𝑀$6 = 71 𝑖𝑓	𝑡𝑎𝑠𝑘	𝑖	𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠	𝑡𝑎𝑠𝑘	𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

To simplify, zero entries will be represented by empty matrix cells. The immediate

precedence relation between tasks 𝑖 and 𝑗 (𝑖, 𝑗 = 1,2,3, … , 𝑛) is represented by the 2-tuple (𝑖, 𝑗),
which indicates that task 𝑖 precedes task 𝑗. Tasks must be named such that if task 𝑖 precedes task
𝑗, then 𝑖 is smaller than 𝑗. This ensures all entries are on one side of the principal diagonal line of
the matrix. In Figure 3, the set of immediate precedence relations for the 12-task network of Figure
1 are listed on the left. The precedence matrix is shown to the right of Figure 3. The principal
diagonal line is highlighted in black. Rows and columns are labeled with the task numbers. Row
1, for example, shows that task 1 is followed by tasks 3, 4, 6, 7, 8, 9, 10, 11, and 12. According
to the precedence diagram, tasks 3 and 4 are immediate followers, while the rest are non-

Helal et al … Vol 6(1) 2024 : 1-20

6

immediate followers of task 1. The immediate followers are highlighted in yellow, while the non-
immediate followers are in grey. The tasks’ processing times are listed to the right and at the
bottom of the matrix.

Algorithm 1 follows the work of Hamta et al. (2013) and Nearchou (2007) and uses the
minimum problem data mentioned above, to construct the precedence matrix into a spreadsheet.
It also identifies the immediate and non-immediate followers for each task.

Fig. 3. Immediate predecessors relations list (left) and the precedence matrix
for the 12-task network in Figure 1

4.2 Using the Precedence Matrix

The precedence matrix, as described, provides efficient support to the analysts for
calculating the various problem features and indices, in executing line balancing heuristics, and
in checking the feasibility of task assignments to workstations. The following subsections
illustrate using the presentence matrix to estimate problem related indices and parameters. For
better presentation, selected balancing rules are implemented within the spreadsheet model, for
each of them the rule index is defined in terms of the rows and columns of the matrix. The
performance of the rules will be compared and evaluated using benchmarking ALBP data.

Algorithm 1: Constructing the Precedence Matrix

I. I. Finding the immediate followers of tasks
1. For each present 2-tuple (𝒊, 𝒋) do:

a. Set 𝑴𝒊,𝒋 = 1 (add 1 at the intersection of row 𝒊 and column 𝒋)

b. Stamp the intersection cell as immediate relation cell
c. Increment the counter of the immediate followers of 𝒊 by 1
d. Add 𝒋 to the list of followers of 𝒊

2. Next 2-tuple

II. II. Finding the non-immediate followers of tasks
3. For each task 𝒊	= 1 to 𝒏 do:

a. If the number of immediate followers of 𝒊 > 0 then
i. For each present 2-tuple (𝒋, 𝒌) do:

1. For each task 𝒋 in (𝒋, 𝒌) where 𝒋 ≠ 𝒊 do:
a. For each task 𝒇 in the list of followers of 𝒊 do:

i. If 𝒇 = 𝒋 then
1. Set 𝑴𝒊,𝒌 = 1 (add 1 at the intersection of row 𝒊 and column 𝒌)
2. Stamp intersection cell as non-immediate relation cell

b. Next 𝒇
2. Next 𝒋

Immediate Precedence
Relations ((i, j): i preceds j)

Task 1 2 3 4 5 6 7 8 9 10 11 12 Time

(1, 3), (1, 4) 1 1 1 1 1 1 1 1 1 1 0.20

(2, 4), (2, 5) 2 1 1 1 1 1 1 1 0.40

(3, 6), (3, 7), (3, 8) 3 1 1 1 1 1 1 1 0.70

(4, 8) 4 1 1 1 1 1 0.10

(5, 10) 5 1 1 1 0.30

(6, 9) 6 1 1 1 0.11

(7, 9) 7 1 1 1 0.32

(8, 9), (8,10), (8,11) 8 1 1 1 1 0.60

(9, 11) 9 1 1 0.27

(10, 11) 10 1 1 0.38

(11, 12) 11 1 0.50

- 12 0.12

Time 0.20 0.40 0.70 0.10 0.30 0.11 0.32 0.60 0.27 0.38 0.50 0.12

Helal et al … Vol 6(1) 2024 : 1-20

7

ii. Next 2-tuple
4. Next	𝒊
5. End

4.2.1 Assessing Difficulty of the ALBP

Common indicators of the ALBP difficulty include the order strength, flexibility ratio, and
the WEST ratio. The order strength (𝑂𝑆) is the ratio of the number of precedence relations among
the tasks to the maximum possible number of relations. If 𝑟 is the number of existing precedence
relations among 𝑛 tasks, then 𝑂𝑆 = 2𝑟/(2(𝑛 + 1)) . The value 𝑛(𝑛 − 1)/2 is the maximum
number of possible relations among 𝑛 tasks. The value of 𝑂𝑆 affects the computational time to
solve the problem; a value close to one implies a highly constrained problem and fewer number
of alternative solutions (Chutima, 2022; Erel & Sarin, 1998; Mastor, 1970; Talbot et al., 1986). It
is easier to see the meaning of 𝑂𝑆 with the precedence matrix, where each entry of 1 represents a
precedence relation. Using Figure 3, 𝑂𝑆 is the sum of all entries in the matrix, divided by half the
matrix size (above the principal diagonal) excluding the 𝑛 cells on the principal diagonal, which
have no entries. The matrix size, as a square matrix is 𝑛	𝑥	𝑛 = 𝑛U. Then, 𝑂𝑆 can be given as
follows in terms of the rows and columns of the matrix:

𝑂𝑆 =
2(∑ ∑ 𝑀$6

-
6./

-
$./)
𝑛(𝑛 − 1)

For the example in Figure 3, OS = 0.697 which is relatively high. The flexibility ratio (𝐹𝑅)
is the complement of the order strength, calculated as 𝐹𝑅	 = 1 − 𝑂𝑆 . It uses the number of
missing precedence relations. It indicates the volume of feasible sequences that can be generated
for a problem. Larger FR values indicate less precedence constraints and more alternative
solutions to evaluate.

Another complexity index was described by (Mastor, 1970) which is the average number
of tasks per workstation, denoted by the WEST ratio. We will call it Task-to-Station Ratio (𝑇𝑆𝑅)
in this article. When an assembly line uses more workstations, the number of tasks per station
(𝑇𝑆𝑅) is small and there are fewer combinations of the tasks to assign to stations. In this case,
balancing heuristics can be faster due to the limited search space, but solutions are more likely to
include significant idle times. On the other hand, with smaller numbers of workstations, 𝑇𝑆𝑅
increases and there will be more possible combinations of tasks and alternative solutions. In that
case, the balancing heuristics will require longer computational times. 𝑇𝑆𝑅 requires the number
of stations to be known in advance, which makes it more relevant to the Type II problems. The
lower bound on the number of workstations can be used as an estimate of the line length (Driscoll
& Thilakawardana, 2001) to use TSR in Type I problems. A lower bound on the number of the
workstations; 𝑚Z$- is the integer value equal to or greater than the quotient of the total processing
time and the cycle time, 𝐶 (Capacho Betancourt, 2008), given by:

𝑚Z$- = [
∑ 𝑡$-
$./
𝐶

\

TSR can then be estimated as follows:

𝑇𝑆𝑅 = 	
𝑛

]∑ 𝑡$-
$./
𝐶 ^

4.2.2 Line Balancing with The Priority Rules

To provide a working prototype of the proposed framework, selected priority rules are
implemented in the spreadsheet model. The more popular rules according to available reviews
(Capacho Betancourt, 2008; Fathi et al., 2018; Moreira et al., 2012; Scholl & Voß, 1997; Talbot
et al., 1986) are included, which are defined below. Using priority rules is meant for simplicity of
presentation. Besides, the matrix-based analysis framework with priority rules can be an attractive
tool to practitioners, given the discussion in Section 1, where managers in practice would be

Helal et al … Vol 6(1) 2024 : 1-20

8

satisfied with quick feasible solutions. It should be noted that other, more structured balancing
heuristics can be integrated with the matrix model well.
 We utilize the matrix framework to perform a comparison of the priority rules. Ten rules
are used; the popular RPW-based rules (we call it maximum positional weight for naming
consistency), the number of followers-based rules, in addition to priority rules using the earliest
and latest stations that a task can be assigned to and the task slack, are included. In the following
list of priority rules, their definitions are made in terms of the rows and columns of the precedence
matrix, where 𝑖 refers to the tasks listed in the rows of the matrix and 𝑗 refers to the tasks listed in
the columns, where 𝑖 and 𝑗	 = 	1,2, … , 𝑛.
1. Maximum Number of Followers (MaxF) rule counts the numbers of followers of each task,

ranks them in descending order, and then assigns tasks to the workstations starting with the
maximum value. Let 𝐹$ be the set of followers of task 𝑖, then its number of followers; |𝐹$|, is
the sum of all entries in row 𝑖 in the matrix

|𝐹$| = , 𝑀$6

-

6.$a/

2. Maximum Number of Immediate Followers (MaxIF) rule counts only the immediate
followers of the task. In the matrix construction algorithm, the immediate and the non-
immediate precedence relations are distinguished from each other. The number of immediate
followers; |𝐼𝐹$| of 𝑖	is the sum of all entries in row 𝑖 if they are tagged as immediate in the
matrix:

|𝐼𝐹$| = , 𝑀$6

-

6.$a/

		𝑖𝑓	𝑀$6	𝑖𝑠	𝑡𝑎𝑔𝑔𝑒𝑑	𝑎𝑠	𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒	

3. Maximum Number of Non-Immediate Followers (MaxNIF) rule counts the non-
immediate followers of the task. The number of non-immediate followers; |𝑁𝐼𝐹$|, of task 𝑖	is
the sum of all entries in row 𝑖, if they are tagged as non-immediate:

|𝑁𝐼𝐹$| = 	 , 𝑀$6

-

6.$a/

		𝑖𝑓	𝑀$6	𝑖𝑠	𝑡𝑎𝑔𝑔𝑒𝑑	𝑎𝑠	𝑛𝑜𝑛 − 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒	

4. Maximum Positional Weight (MaxPW) rule calculates the PW of each task, ranks them in
descending order, and then assigns tasks to workstations starting with the maximum PW
value. If 𝐹$ is the set of followers of task 𝑖, then 𝑃𝑊$ = 𝑡$ + ∑ 𝑡gg∈ij

, where 𝑡$ is the process
time of 𝑖. In the matrix format, 𝑃𝑊$ is equal to the process time of task 𝑖 plus the sum of
products of row 𝑖 and the row containing the tasks’ process times:

𝑃𝑊$ = 𝑡$ + , k𝑀$6 × 𝑡6l
-

6.$a/

	

5. Maximum Average Positional Weight (MaxAPW) rule calculates the PW of the task
divided by the number of its followers plus one:

𝑀𝑎𝑥𝐴𝑃𝑊$ =
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

1 + |𝐹$|
=
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

1 + ∑ 𝑀$6
-
6.$a/

6. Maximum Positional Weight of Followers (MaxPWF) rule calculates the PW for the task
but without the task itself:

𝑃𝑊𝐹$ = , k𝑀$6 × 𝑡6l
-

6.$a/

	

7. Maximum Average Positional Weight of Followers (MaxAPWF) rule is similar to the
previous rule but divided by the number of followers of the task:

Helal et al … Vol 6(1) 2024 : 1-20

9

𝑀𝑎𝑥𝐴𝑃𝑊$ =
∑ k𝑀$6 × 𝑡6l
-
6.$a/

|𝐹$|
=
∑ k𝑀$6 × 𝑡6l
-
6.$a/
∑ 𝑀$6
-
6.$a/

8. Minimum Slack of Task (MinSLK) rule calculates slack of each task, ranks the values in
ascending order, and assigns the tasks to stations starting with the minimum value. The
minimum slack task is the one having the least flexibility in the assignment to workstations
and should be assigned first. Let 𝐿$	and 𝐸$	be the latest and earliest stations that the task can
be assigned to, respectively, then the slack of task 𝑖 is given by:

𝑆𝑙𝑎𝑐𝑘$ = 𝐿$ − 𝐸 $.

9. Earliest Station for Task (MinEi) rule ranks the tasks in ascending order of 𝐸$	and assigns

them to stations starting with the minimum value. For a task 𝑖 , 𝐸$ is the first station to which
the task can be assigned given all its predecessors have been assigned before it. Let 𝑃$ be the
set of predecessors of task 𝑖, then we have

𝐸$ = [
𝑡6 + ∑ 𝑡gg∈qj

𝐶
\

In the matrix structure, the predecessors of a task are those tasks having entries of 1 in the
task’s column. Using 𝑖 for rows and 𝑗 for columns, then 𝐸$ can be represented as follow:

𝐸6 = r𝑡6 +
∑ k𝑀$6 × 𝑡$l
6s/
$./
𝐶

t

10. Latest Station for Task (MinLi) rule ranks tasks in ascending order of 𝐿$	 and assigns them
to stations starting with the minimum value. For task 𝑖, 𝐿$	is the last station the task can be
assigned to, such that all its followers can be assigned after it. It assumes knowing the needed
number of workstations, yet an estimate of the upper bound on the number of workstations
can be used according to. In Scholl & Voß (1997) an upper bound 𝑚Zuv is given as follows:

𝑚Zuv = 𝑀𝑖𝑛 w𝑛, x
∑ 𝑡$-
$./

𝐶 + 1 − 𝑡Zuv
y + 1, x

2 × ∑ 𝑡$-
$./

𝐶 + 1
y + 1	z

The value of 𝐿$ is calculated by (Capacho Betancourt, 2008; Fathi et al., 2018):

𝐿$ = 𝑚Zuv + 1 − [
𝑡$ + ∑ 𝑡gg∈ij

𝐶
\

In the matrix format, with 𝐹$ as defined earlier, 𝐿$	 is calculated as follows:

𝐿$ = 𝑚Zuv + 1 − [
𝑡$ + ∑ k𝑀$6 × 𝑡6l

-
6.$a/

𝐶
\

Helal et al … Vol 6(1) 2024 : 1-20

10

Fig. 4. Precedence matrix for 12-task ALBP (top left), values and indices of priority rules and problem parameters,
and solution using MaxPW rule (bottom right)

In Figure 4, the precedence matrix of the 12-task example from Figure 1 is shown with
relevant problem features and priority rules parameters. This was implemented in MS Excel. The
12-task example was solved using all ten rules, and all achieved 5-station solutions with line
efficiency of 80%, but different smoothness index values. Best solution was given by MaxPW,
which gave 0.181 smoothness index: about 25% lower than the others. This solution is shown in
the lower right part of Figure 4.

4.2.3 Checking Task Assignment Feasibility with The Precedence Matrix
 Solving the ALBP involves three main steps:
1. Developing a sequence of tasks, which does not violate any precedence constraints.
2. Assigning the tasks to workstations, in order of tasks in the sequence, without exceeding the

cycle time on any workstation.
3. Improving the assignments by transferring and/or swapping tasks between workstations,

without violating the cycle time limit or any of the precedence constraints.
The priority rules implement the first two steps. The third is usually the focus of the search-

based heuristics (genetic algorithm, tabu search, etc.), which need to start with an initial solution,
commonly developed with some priority rules. The sequence is a list of tasks, ordered in
ascending or descending order based on some criteria. Sequences with no violations of the
precedence constraints are feasible consequences, and the assignment can be as simple as dividing
the sequence into sub-sequences, each with a total time less than or equal to the cycle time. The
number of subsequences will be the number of workstations.

To illustrate, the values for the MaxPW and MinSLK rules for our 12-task example are
given in Table 1, ordered from left to right in descending order for MaxPW and ascending order
for MinSLK. Consider task 8, the precedence matrix shows tasks 1,2,3 and 4 as its predecessors,
listed in column 8 (see Figure 4, top left). For MaxPW in Table 1, all four predecessors have
higher positional weights and are ranked before task 8 in the sequence. Then the position of task
8 in the sequence is feasible. This can be shown true for all tasks in this sequence. Then the
MaxPW sequence is feasible. For MinSLK, task 8 is positioned 7th, and since task 4 is 10th, not
all predecessors of task 8 are ranked before it and hence the sequence is infeasible. Assigning
tasks to workstations using this infeasible sequence may be complicated.

Table 1 - Task sequences based on MaxPW and MinSLK rules for the 12-task example

Position 1 2 3 4 5 6 7 8 9 10 11 12

MaxPW 3.30 3.00 2.67 1.97 1.87 1.30 1.21 1.00 1.00 0.89 0.62 0.12

Tasks 1 3 2 4 8 5 7 6 10 9 11 12
MinSLK 0 0 0 1 1 1 1 1 1 2 2 2

Tasks 1 11 12 2 3 7 8 9 10 4 5 6

Helal et al … Vol 6(1) 2024 : 1-20

11

Algorithm 2 can be used to check the feasibility of a sequence, based on the precedence
matrix. As explained, the position of a task in a sequence is feasible if all its predecessors are
ranked ahead of it. Algorithm 2 checks feasibility by considering each task in the sequence and
confirming that all its predecessors have already been ranked before it in the sequence. In the
matrix format, the predecessors of a task 𝑗 are row tasks having entries of 1 in column 𝑗.

4.2.4 Feasible Assignment of Tasks to WorkStation

Algorithm 3 is an efficient procedure to assign assembly tasks to the workstations while
ensuring the feasibility of the assignments, by using the precedence matrix’s rows and columns
to check the task predecessors and followers. It has been used to execute the priority rules
described earlier. It can be incorporated into the execution of more advanced balancing heuristics,
whenever an assignment action is to be made.

Algorithm 2: Checking the feasibility of task sequences using the precedence matrix

1. For each position 𝒌	 = 	𝟏	𝒕𝒐	𝒏 in the task sequence, do:
a. Set 𝒋 equal the task in position 𝒌
b. For each row 𝒊	 = 	𝟏	𝒕𝒐	𝒋	– 	𝟏, do:

i. If 𝑴𝒊𝒋 = 𝟏 then:
1. If 𝒌	 = 	𝟏 then

a. Sequence is infeasible
b. End

2. 𝑳𝒆𝒕	𝑹	 = 	𝟎
3. For each position 𝒍	 = 	𝟏	𝒕𝒐	𝒌	– 	𝟏 in the sequence, do:

a. Set 𝒓 equal to the task in position 𝒍
b. If 𝒊	 = 	𝒓 then 𝑹	 = 	𝑹 + 𝟏

4. Next 𝒍
5. If 𝑹 ≠ 𝟏 then

a. Sequence is infeasible
b. End

c. Next 𝒊
2. Next 𝒌
3. End

While assigning tasks to a workstation, if a candidate task cannot be assigned because of
workstation time limit or a predecessor that could not be assigned yet, then the task is skipped,
and the next in sequence is considered. Skipping tasks can cause more infeasibility issues. In
Algorithm 3, the assignment starts with the top-ranked task, and when a task is assigned to a
station it is removed from the sequence. If tasks are skipped, the assignment process continues
until any later task could be assigned, then the process returns to the current top of the sequence,
to reattempt the skipped tasks. This may increase computational efforts, but it is an accurate
execution of the ranked sequence, since skipped tasks still retain higher priority than.

Algorithm 3: Assignment of tasks to workstations and checking for feasibility at each
attempt
1. Initialize the list of already assigned tasks
2. Let the current open station be station 𝒌; set 𝒌	 = 	𝟏
3. Set station time of 𝒌; 𝑻𝒌 = 𝟎
4. Set 𝒍 = 𝟏
5. Let 𝒋	 = candidate task; task ranked number 𝒍 in sequence, its process time is 𝒕𝒋
6. If 𝑻𝒌 < 𝒕𝒋 then:

a. If 𝒋 is not last in sequence, then set 𝒍	 = 	𝒍	 + 	𝟏 and Go To Step 5
b. Set 𝒌	 = 	𝒌 + 𝟏 and Go To Step 3

7. For each row 𝒊 = 𝟏	𝒕𝒐	𝒋 − 𝟏, do:

Helal et al … Vol 6(1) 2024 : 1-20

12

a. If 𝑴𝒊𝒋 = 𝟏 then:
i. For each task 𝒓 in the list of already assigned tasks, do:

1. If 𝒊	 = 	𝒓 then Go To Step 8
ii. Next 𝒓

iii. Mark task 𝒊 as not yet assigned to a station
iv. Mark task 𝒋 as cannot be assigned to current open station
v. Let 𝒍	 = 	𝒍	 + 	𝟏 and Go To step 5

8. Next 𝒊
9. Assign 𝒋 to current open station 𝒌
10. Let 𝑻𝒌 = 𝑻𝒌 +	𝒕𝒊		
11. Append 𝒋 the list of the already assigned tasks
12. Delete 𝒋 from the ranked sequence
13. If the length of the ranked sequence > 1 then Go To Step 4
14. End

5. Computational Experiments

 The proposed precedence matrix model has been implemented in MS Excel and used to
compare the priority rules listed earlier, using benchmarking assembly line balancing problems.
The matrix for each problem was constructed using Algorithm 1. The assignment of tasks to
workstations was carried out using Algorithm 3. All quantities defined in previous sections in
terms of the rows and columns of the matrix were implemented and used. The benchmarking data
was obtained from the Assembly Line Balancing webpage (Boysen et al., 2021), which hosts sets
of benchmarking data for line balancing and scheduling applications. The data is available for
free, for research and non-commercial purposes. The datasets based on Otto et al. (2013) were
picked. For the current presentation, we used only small size problems of 20 tasks. The dataset
includes 525 problems, which were generated with desired order strength (𝑂𝑆) values of 0.20,
0.60, and 0.90. The actual 𝑂𝑆 values reported on the data page are as follows, which matched our
calculations with the matrix model:
• Desired 𝑂𝑆 of 0.20: 225 problems with actual 𝑂𝑆 ranging from 0.14 to 0.30.
• Desired 𝑂𝑆 of 0.60: 225 problems with actual 𝑂𝑆 ranging from 0.50 to 0.65.
• Desired 𝑂𝑆 of 0.90: 75 problems with actual 𝑂𝑆 ranging from 0.80 to 0.85.

All problems were indicated to have been solved optimally, except for only eight of them,
and the number of workstations in the optimum solutions was reported. The dataset also includes
the lower bound on the number of workstations for each problem. We used this lower bound to
calculate 𝑇𝑆𝑅 for each problem, which will be used in analyzing the results. The values of TSR
varied from 1.25 to 10.0. Since the number of tasks is fixed, then the variability is attributed to
the number of needed workstations, which depends on the task process times. For the analysis of
the results, the 𝑇𝑆𝑅 values were classified into three levels:
• Low 𝑇𝑆𝑅: less than 3.00: 182 problems with 𝑂𝑆 from 0.14 to 0.84
• Medium 𝑇𝑆𝑅: from 3.00 to 5.00: 177 problems with 𝑂𝑆 from 0.15 to 0.85
• High 𝑇𝑆𝑅: more than 5.00: 166 problems with 𝑂𝑆 from 0.15 to 0.84

The common line balance performance metrics, line efficiency and smoothness index, are

used to evaluate the performance of the balancing rules. The line efficiency (𝐿𝐸) is the ratio of
the total work content of the assembly job to the time available on all needed workstations. Higher
values 𝐿𝐸 are better. It is calculated as:

𝐿𝐸 =
∑ 𝑡$-
$./
𝑚 × 𝐶

The smoothness index (SI) measures how leveled the task distribution among the

workstations. A smaller 𝑆𝐼 value indicates more nearly equal station times, which implies fair
work loading and minimized idle times. It is defined as follows where 𝑇Zuv is the longest

Helal et al … Vol 6(1) 2024 : 1-20

13

workstation time among all workstations, 𝑇� the time of workstation 𝑘, and 𝑚 the number of
stations in the solution.

𝑆𝐼 = �,(𝑇Zuv − 𝑇�)U
Z

�./

6. Results and Discussions

All the work was implemented in MS Excel. The performance of the balancing rules was
compared for the line efficiency and the smoothness index, considering the different levels of 𝑂𝑆
and 𝑇𝑆𝑅 . In addition, since optimal solutions of the test problems have been reported, we
calculate the percentage of problems that could be solved optimally using the priority rules. This
measures the ability of the rules to find optimal solutions. This is meant to assess the attractiveness
of the proposed matrix model to practitioners. Obtaining optimal solutions efficiently should be
of great value to practitioners. The results are discussed in the following subsections.

6.1 Ability to Find Optimum Solutions

All tested balancing priority rules could find solutions with the optimum number of
workstations, or the optimal number plus one extra station, in more than 90% of the problems and
95% for some of them. As in Figure 5, MaxPW performed relatively better than the others; finding
solutions with optimum number of stations (0 extra) in 71% of the problems followed by
MaxAPW at 65.8% of all problems. Achieving optimal solutions for an average of about 60% of
the problems is a satisfying performance for these simple balancing methods. This is encouraging
for analysts interested in collecting insights on potential alternative line designs efficiently with
the proposed spreadsheet precedence matrix framework.

Fig. 5. Ability to find solutions with optimum number of workstations or optimum +1
With respect to 𝑂𝑆, Figure 6 shows the fractions of problems that could be solved with

optimum number of stations. MaxPW can roughly be considered better than the others. There is
no clear trend for the impact of 𝑂𝑆 on the performance. However, it can be noticed that more than
half of the rules could achieve better results for the 0.9 𝑂𝑆 than for the lower 𝑂𝑆 values. Higher
𝑂𝑆 implies fewer alternatives in assigning tasks to stations, and hence the rule-based methods can
have better chances to perform well, since they only evaluate limited number of solutions.

Helal et al … Vol 6(1) 2024 : 1-20

14

Fig. 6. Ability to find solutions with optimum number of workstations vs. order strength
With respect to the impact of 𝑇𝑆𝑅 , Figure 7 shows a significantly lower percentage

(average of about 36%) of optimal solutions for the smaller 𝑇𝑆𝑅 values, as compared to around
76% for medium 𝑇𝑆𝑅 , and 72% for higher 𝑇𝑆𝑅 values. Smaller 𝑇𝑆𝑅 values imply a larger
number of workstations, and fewer tasks at each station. Thus, the priority rules, which are already
limited in their search capabilities, are having even less flexibility to combine the tasks on the
workstations. Although the differences are not significant, the rules generally perform better for
medium than for higher 𝑇𝑆𝑅. Higher 𝑇𝑆𝑅 can be challenging for priority rules because of the
increased flexibility, since the rules can evaluate a limited number of solutions. However, more
investigations using larger problems are needed to confirm these observations.

Fig. 7. Ability to find solutions with optimum number of workstations vs. task-to-station ratio
Although the current comparison is limited to small-sized problems, it can be argued, for

this problem size, that 𝑇𝑆𝑅 which is a function in number of tasks and number of workstations,
may provide a better indicator of the expected solution quality than the popular 𝑂𝑆, which uses
the number of precedence relations among the tasks.

6.2 Line Efficiency

Figure 8 compares the achieved line efficiency (𝐿𝐸) with respect to 𝑂𝑆. All the rules
showed equivalent performance, achieving around 85% efficiency. It is also noticeable that the
higher the 𝑂𝑆 the lower the efficiency. Lower efficiency means more workstations are needed
and higher 𝑂𝑆 implies difficulty to assign tasks to workstation dure to stronger precedence
constraints. This is consistent for all rules, although the differences are insignificant. 𝐿𝐸 decreases

Helal et al … Vol 6(1) 2024 : 1-20

15

within 5% range with 𝑂𝑆 increasing from 0.2 to 0.9. MaxPW, also showed marginally higher
efficiency than other rules for all 𝑂𝑆 values.

For 𝑇𝑆𝑅 (Figure 9), smaller 𝑇𝑆𝑅 values allowed 𝐿𝐸 of less than 80%; between 77%
(MinEi) to 79.8% (MaxPW). Higher 𝑇𝑆𝑅 allowed higher 𝐿𝐸 results, roughly from 86.1% to
90.3% (MaxPW). There is a consistent trend that higher 𝑇𝑆𝑅 leads to higher efficiency for all
rules. Higher 𝑇𝑆𝑅 indicates fewer workstations, which directly impacts the efficiency level. This,
again, suggests that 𝑇𝑆𝑅 can be more indicative of the expected solution quality and length of the
line, than 𝑂𝑆. It is worth noting that, TSR is calculated based on estimated lower bond of the
number of workstations, while final solutions often require more stations than the lower bound.
In fact, an optimum solution can be defined as the one using the minimum number of
workstations, which is estimated by the lower bound value. Despite this, TSR appears to be a
better predictor of solution quality than OS.

Fig. 8. Achievable line design efficiency vs. order strength

Fig. 9. Achievable line design efficiency vs. task-to-station-ratio

6.3 Balance Smoothness Index

Figure 10 compares the achieved smoothness index (𝑆𝐼) with respect to 𝑂𝑆. All rules are
again performing similarly. Higher 𝑂𝑆 leads to relatively higher 𝑆𝐼 values. Higher 𝑂𝑆 implies
more precedence relations and hence difficulty assigning tasks to stations. This can lead to using
more workstations, making it harder to level the station times. Higher OS was also associated
with lower 𝐿𝐸. Lower 𝑆𝐼 is desirable as it indicates more balanced task assignments.

With respect to 𝑇𝑆𝑅 , Figure 11 shows significant differences in performance for the
different 𝑇𝑆𝑅 levels. Lower 𝑇𝑆𝑅 led to more than double the 𝑆𝐼 values compared to the higher
𝑇𝑆𝑅. Low 𝑇𝑆𝑅 means larger numbers of stations and fewer tasks at each station. In such cases,
the solutions are expected to have significant idle times. This supports that 𝑇𝑆𝑅 can be a better
predictor of the assembly line balancing solution quality than 𝑂𝑆.

Helal et al … Vol 6(1) 2024 : 1-20

16

Fig. 10. Achievable smoothness index vs. order strength

Fig. 11. Achievable smoothness index vs. task-to-station ratio
In summary, this limited comparison of the balancing priority rules was meant to

demonstrate the use of the precedence matrix-based framework. The ability of simple priority
rules to achieve optimal solutions is encouraging to practitioners who prefer to have quick feasible
solutions, which appear to be a common attitude in practice as discussed in Section 1. The
proposed framework can provide them with efficient and inexpensive tools to perform the
analysis. With simple priority rules, there are still chances to find optimal solutions efficiently.

The results of the comparison show that all tested priority rules performed similarly in
general, with MaxPW slightly outperforming the others. The better performance of the positional
weight rule is consistent with previous studies, which have usually found the positional weight to
be an effective rule than other rules.
Other insights can also be drawn based on the results of the comparison. The 𝑇𝑆𝑅 appears to be
a more effective indicator of the performance of the balancing rules than OS. The number of
workstations and the number of tasks (e.g., as in 𝑇𝑆𝑅) can be more effective than the popular
order strength; 𝑂𝑆, which is a function of the number of precedence relations and number of tasks,
in assessing problem complexity. Both 𝑂𝑆 and 𝑇𝑆𝑅 are functions of the number of tasks. 𝑇𝑆𝑅
uses the number of workstations, which is related to the solution, while 𝑂𝑆 uses the number of
precedence relations which are related to the problem inputs. It can be argued that the number of
workstations, or estimates of the same, would be important in defining effective measures of
performance and objective functions for simple ALBP. However, more comprehensive
comparisons are needed to evaluate this argument.

7. Conclusion

This article proposes the use of the precedence matrix as a foundation for the development
of efficient analysis frameworks for the simple assembly line balancing problem (ALBP). We
have described the implementation of the precedence matrix-based framework in a spreadsheet
model, leveraging the cost-effectiveness and robust data manipulation capabilities of the
spreadsheet applications. The matrix model offers a straightforward organization of the line

Helal et al … Vol 6(1) 2024 : 1-20

17

balancing data for analysis purposes and provides a simple and effective tool for guiding the
development of feasible assembly line design solutions. It supports two key components in
developing balancing procedures: managing the inputs for solution procedures and ensuring
feasible solutions. The proposed matrix framework is flexible and can be integrated with various
balancing methods. In this work, we utilized simple priority rules for line balancing within the
spreadsheet model. The outcomes demonstrated an efficient and cost-effective tool for production
managers to evaluate potential line designs. The goal of this work was to help bridge the gap
between research and practice in the area of assembly line balancing.

We introduced algorithms for constructing the precedence matrix from core balancing
problem data and for using its contents to assign assembly tasks to workstations, resulting in
feasible line designs. The proposed framework is easily extensible, allowing for the inclusion of
additional performance measures and problem indicators, defined based on the rows and columns
of the matrix.

A comparison of the performance of balancing priority rules was conducted using the
matrix model. The findings indicated that the balancing rules included could achieve optimal
solution in more than 60% of the test problems. No significant differences in performance were
observed among them, yet the positional weight-based rules showed relatively better performance
consistently. As discussed earlier, production managers often depend on their experiences and
intuition to quickly develop feasible solutions. The proposed matrix model with the simple
balancing rules has the potential to fit their needs, offering managers the flexibility to select the
rules that best align with their specific operational goals. Other advanced balancing methods could
be used as well.

In addition, the results of the comparison suggest that the task-to-station ratio (𝑇𝑆𝑅), which
is a function in number of workstations and number of tasks, can be a more reliable indicator of
ALBP complexity and predictor of expected solution quality than the popular order strength (𝑂𝑆),
which is a function in number of tasks and precedence relations among them. This implies that
more emphasis should be placed on the number of workstations in developing performance
metrics and objective functions for the line balancing problem. Nonetheless, more investigations
are required to substantiate these arguments.
Future developments of the matrix framework may involve developing the matrix structure
further to include more than two dimensions, allowing more information to be included in addition
to the precedence relations. Other balancing approaches may also be included. This will enable
the model to support other versions of the ALBP and provide a more nuanced and comprehensive
approach to assembly line balancing.

References
Ahmadi, T., & van der Rhee, B. (2023). Multiobjective Line Balancing Game: Collaboration and

Peer Evaluation. INFORMS Transactions on Education, 23(3), 179–195.
https://doi.org/https://doi.org/10.1287/ited.2022.0277

Bao, Z., Chen, L., & Qiu, K. (2023). An aircraft final assembly line balancing problem
considering resource constraints and parallel task scheduling. Computers & Industrial
Engineering, 182, 109436. https://doi.org/https://doi.org/10.1016/j.cie.2023.109436

Battaïa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution
approaches. International Journal of Production Economics, 142(2), 259–277.
https://doi.org/https://doi.org/10.1016/j.ijpe.2012.10.020

Boysen, N., Fleidner, M., Klein, R., & Scholl, A. (2021). Assembly Line Balancing, Datasets and
Research Topics. NA,[Online], Https://Assembly-Line-Balancing. de/, Accessed June, 18.
https://assembly-line-balancing.de/

Boysen, N., Schulze, P., & Scholl, A. (2022). Assembly line balancing: What happened in the last
fifteen years? European Journal of Operational Research, 301(3), 797–814.
https://doi.org/https://doi.org/10.1016/j.ejor.2021.11.043

Capacho Betancourt, L. (2008). ASALBP: the alternative subgraphs assembly line balancing
problem. Formalization and resolution procedures. Universitat Politècnica de Catalunya.
https://doi.org/10.5821/dissertation-2117-93265

Helal et al … Vol 6(1) 2024 : 1-20

18

Çelik, M. T., & Arslankaya, S. (2023). Solution of the assembly line balancing problem using the
rank positional weight method and Kilbridge and Wester heuristics method: An application
in the cable industry. Journal of Engineering Research, 11(3), 182–191.
https://doi.org/https://doi.org/10.1016/j.jer.2023.100082

Chiang, W.-C. (1998). The application of a tabu search metaheuristic to the assembly line
balancing problem. Annals of Operations Research, 77(0), 209–227.
https://doi.org/https://doi.org/10.1023/A:1018925411397

Chutima, P. (2020). Research trends and outlooks in assembly line balancing problems.
Engineering Journal, 24(5), 93–134.
https://doi.org/https://doi.org/10.4186/ej.2020.24.5.93

Chutima, P. (2022). A comprehensive review of robotic assembly line balancing problem. Journal
of Intelligent Manufacturing, 33(1), 1–34. https://doi.org/https://doi.org/10.1007/s10845-
020-01641-7

Driscoll, J., & Thilakawardana, D. (2001). The definition of assembly line balancing difficulty
and evaluation of balance solution quality. Robotics and Computer-Integrated
Manufacturing, 17(1–2), 81–86. https://doi.org/https://doi.org/10.1016/S0736-
5845(00)00040-5

Eghtesadifard, M., Khalifeh, M., & Khorram, M. (2020). A systematic review of research themes
and hot topics in assembly line balancing through the web of science within 1990–2017.
Computers & Industrial Engineering, 139, 106182.
https://doi.org/https://doi.org/10.1016/j.cie.2019.106182

Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures. Production
Planning & Control, 9(5), 414–434.
https://doi.org/https://doi.org/10.1080/095372898233902

Fathi, M., Fontes, D. B. M. M., Urenda Moris, M., & Ghobakhloo, M. (2018). Assembly line
balancing problem: A comparative evaluation of heuristics and a computational assessment
of objectives. Journal of Modelling in Management, 13(2), 455–474.
https://doi.org/https://doi.org/10.1108/JM2-03-2017-0027

Gonzales-Rodriguez, D. C. (2022). System improvement through the application of assembly line
balancing. Proceedings of the International Conference on Industrial Engineering and
Operations Management, 4545–4558. https://ieomsociety.org/istanbul2022/proceedings/

Hamta, N., Ghomi, S. M. T. F., Jolai, F., & Shirazi, M. A. (2013). A hybrid PSO algorithm for a
multi-objective assembly line balancing problem with flexible operation times, sequence-
dependent setup times and learning effect. International Journal of Production Economics,
141(1), 99–111. https://doi.org/https://doi.org/10.1016/j.ijpe.2012.03.013

Helgeson, W. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked positional
weight technique. Journal of Industrial Engineering, 12(6), 394–398.

Hoffmann, T. R. (1963). Assembly line balancing with a precedence matrix. Management
Science, 9(4), 551–562. https://doi.org/https://doi.org/10.1287/mnsc.9.4.551

Hu, X., Xu, Z., Yang, L., & Zhou, R. (2015). A Novel Assembly Line Scheduling Algorithm
Based on CE‐PSO. Mathematical Problems in Engineering, 2015(1), 685824.
https://doi.org/https://doi.org/10.1155/2015/685824

Jackson, J. R. (1956). A computing procedure for a line balancing problem. Management Science,
2(3), 261–271. https://doi.org/https://doi.org/10.1287/mnsc.2.3.261

Jiao, Y., Jin, H., Xing, X., Li, M., & Liu, X. (2021). Assembly line balance research methods,
literature and development review. Concurrent Engineering, 29(2), 183–194.
https://doi.org/https://doi.org/10.1177/1063293X20987910

Katiraee, N., Calzavara, M., Finco, S., Battaïa, O., & Battini, D. (2023). Assembly line balancing
and worker assignment considering workers’ expertise and perceived physical effort.
International Journal of Production Research, 61(20), 6939–6959.
https://doi.org/https://doi.org/10.1080/00207543.2022.2140219

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu search.
European Journal of Operational Research, 168(3), 826–837.
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.031

Helal et al … Vol 6(1) 2024 : 1-20

19

Manoria, A., Mishra, S. K., & Maheshwar, S. (2012). Expert System based on RPW Technique
to Evaluating Multi Product Assembly Line Balancing Solution. International Journal of
Computer Applications, 40(4), 27–32. https://doi.org/10.5120/5034-7185

Mastor, A. A. (1970). An experimental investigation and comparative evaluation of production
line balancing techniques. Management Science, 16(11), 728–746.
https://doi.org/https://doi.org/10.1287/mnsc.16.11.728

Moodie, C. L. (1964). A heuristic method of assembly line balancing for assumptions of constant
or variable work element times. Purdue University ProQuest Dissertations & Theses,
1964. 6408691.

Moreira, M. C. O., Ritt, M., Costa, A. M., & Chaves, A. A. (2012). Simple heuristics for the
assembly line worker assignment and balancing problem. Journal of Heuristics, 18, 505–
524. https://doi.org/https://doi.org/10.1007/s10732-012-9195-5

Nearchou, A. C. (2007). Balancing large assembly lines by a new heuristic based on differential
evolution method. The International Journal of Advanced Manufacturing Technology,
34(9), 1016–1029. https://doi.org/10.1007/s00170-006-0655-7

Nicholas, J. (2018). Lean production for competitive advantage: a comprehensive guide to lean
methodologies and management practices (2nd ed.). Productivity Press.
https://doi.org/https://doi.org/10.4324/9781351139083

Otto, A., Otto, C., & Scholl, A. (2013). Systematic data generation and test design for solution
algorithms on the example of SALBP Gen for assembly line balancing. European Journal
of Operational Research, 228(1), 33–45.
https://doi.org/https://doi.org/10.1016/j.ejor.2012.12.029

Ozdemir, R., Sarigol, I., AlMutairi, S., AlMeea, S., Murad, A., Naqi, A., & AlNasser, N. (2021).
Fuzzy multi-objective model for assembly line balancing with ergonomic risks
consideration. International Journal of Production Economics, 239, 108188.
https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108188

Pearce, B. W., Antani, K., Mears, L., Funk, K., Mayorga, M. E., & Kurz, M. E. (2019). An
effective integer program for a general assembly line balancing problem with parallel
workers and additional assignment restrictions. Journal of Manufacturing Systems, 50,
180–192. https://doi.org/https://doi.org/10.1016/j.jmsy.2018.12.011

Rahman, S. M. A., Rahman, M. F., Tseng, T.-L. B., & Kamal, T. (2023). A simulation-based
approach for line balancing under demand uncertainty in production environment. 2023
Winter Simulation Conference (WSC), 2020–2030.
https://doi.org/10.1109/WSC60868.2023.10408105

Rashid, M. F. F., Hutabarat, W., & Tiwari, A. (2012). A review on assembly sequence planning
and assembly line balancing optimisation using soft computing approaches. The
International Journal of Advanced Manufacturing Technology, 59, 335–349.
https://doi.org/https://doi.org/10.1007/s00170-011-3499-8

Şahin, M., & Kellegöz, T. (2024). Novel mathematical modelling approaches and a new lower
bounding scheme for multi-manned assembly line balancing problems with walking
workers. Computers & Industrial Engineering, 190, 110043.
https://doi.org/https://doi.org/10.1016/j.cie.2024.110043

Salveson, M. E. (1955). The assembly line balancing problem. Transactions of the ASME, 7, 939–
947. https://doi.org/https://doi.org/10.1115/1.4014559

Schlueter, M. J., & Ostermeier, F. F. (2022). Dynamic line balancing in unpaced mixed-model
assembly lines: A problem classification. CIRP Journal of Manufacturing Science and
Technology, 37, 134–142. https://doi.org/https://doi.org/10.1016/j.cirpj.2022.01.012

Scholl, A., & Voß, S. (1997). Simple assembly line balancing—Heuristic approaches. Journal of
Heuristics, 2, 217–244.
https://doi.org/https://link.springer.com/article/10.1007/BF00127358

Sotskov, Y. N. (2023). Assembly and production line designing, balancing and scheduling with
inaccurate data: A survey and perspectives. Algorithms, 16(2), 100.
https://doi.org/https://doi.org/10.3390/a16020100

Helal et al … Vol 6(1) 2024 : 1-20

20

Talbot, F. B., & Patterson, J. H. (1984). An integer programming algorithm with network cuts for
solving the assembly line balancing problem. Management Science, 30(1), 85–99.
https://doi.org/https://doi.org/10.1287/mnsc.30.1.85

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation of heuristic
line balancing techniques. Management Science, 32(4), 430–454.
https://doi.org/https://doi.org/10.1287/mnsc.32.4.430

Warshall, S. (1962). A theorem on boolean matrices. Journal of the ACM (JACM), 9(1), 11–12.
https://doi.org/https://doi.org/10.1145/321105.321107

