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ABSTRACT

Informed RRT* has been mentioned as a great method to find feasible and optimal solution of path
planning. Technically, it uses the prolate hyper-spheroid and a centralized optimization strategy to gain
the optimality of path. This optimization process is started when the initial feasible solution is found.
Conventionally, the traditional procedure of RRT* is used to connecting starting point and goal point
feasibly. Therefore, it is not suppressing if the optimization process begins later in large coverage of path
planning problem. For this reason, a new strategy needs to propose with an objective to speed up the
convergence rate by reducing the inefficiency of its blind sampling. Sequentially, it is conducted by
integrating the bias technique and constraint sampling to replace the traditional sampling method. Next,
the nearest node's ancestor is taken into consideration up until the first stage of choosing the parent is less
expensive then RRT*. Regarding to these offers and the comparative results, the performance of the
proposed method has shown better performance compared to its predecessor in terms of optimality,
indicated by a decrease in finding the initial path by an average acceleration of 47.90% and a convergence
rate indicated by an average path cost decrease value of 3.94%.
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1. Introduction

In certain scenarios, the robot concurrently undertakes exploration and Simultaneous Localization
and Mapping (SLAM) tasks Wang et al., 2010; Yu et al., 2014). SLAM facilitates the
determination of marginalized poses and the initial unknown map, supporting the robot's
autonomy. This assumption arises from the efficiency of these tasks, allowing the robot to
primarily focus on deciding the goal point from any initial position (L. Li et al., 2018; Tian,
Suwoyo, Wang, & Li, 2019; Tian et al., 2019; Wen et al., 2015). The subsequent finding of a
feasible and safe path is termed global path planning, while the tracing process is referred to as
path tracking. Effective path planning is crucial before the robot transitions from its current to a
desired pose to generate the reference path. Basically, there are two classifications based on how
expansion is carried out, namely sampling-based methods and search-based methods. Search-
based methods such as Breath First Search (BFS) (S. E. (Sakaria) Ginting & Sembiring, 2019) ,
Depth First Search (DFS)(EI-Ghoul et al., 2008; S. E. Ginting & Sembiring, 2019), Dijkstra
(Rachmawati & Gustin, 2020) , and A* (Al-Ansarry & Al-Darraji, 2021; Rachmawati & Gustin,
2020; Ran et al., 2021; Wang et al., 2021), offer a high degree of path optimality. However, it has
a slow convergence speed. Meanwhile, sampling-based methods tend to have low optimality but
can work quickly. Researchers consider overcoming the speed of search methods more difficult
than improving the optimality of sampling-based methods. This is relatively the basis that
influences the rapid development of sampling-based methods. Rapidly-Exploring Random Trees
(RRT) is the method that is considered to have initiated this development (J. Li et al., 2014;
Noreen et al., 2016). As the name suggests, RRT works by generating a random tree consisting
of nodes that represent positions in the robot or vehicle configuration space. This tree is generated
randomly by adding new nodes based on randomness in the configuration space, then connecting
these nodes with the closest nodes that have been created previously. Even though it has been
able to solve the path planning problem, the solution provided is far from optimal. This is caused
by an undirected random sampling process. So, by implementing the node reconnection stage,
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RRT develops with the name RRT*. With this reconnection process, RRT* can improve the
solution with a recursive iteration process. However, in a large environment, the time required to
produce an optimal solution is as if infinite. This became a problem that was then paid attention
to. In an effort to increase speed, this method is often combined with methods such as Potential
Field (Min et al., 2015; D. Wu et al., 2022; Xinying et al., 2006), Genetic Algorithm (Chen &
Qin, 2011; Dain, 1998; Ni et al., 2016; Suwoyo et al., 2018; Yusuf & Musdholifah, 2024; Zhou
et al., 2012), Ant Colony Optimization (Bozorg-Haddad et al., 2017; Juang et al., 2018a),
Artificial Bee Colony (Chen et al., 2017; Suwoyo et al., 2024), Particle Swarm Optimization
(Adriansyah et al., 2019; Agrawal & Shrivastava, 2017; Jiang et al., 2017), and Neural Network
(Bingul et al., 2005; Caceres et al., 2017; Ibarra-Pérez et al., 2022), to produce a directed search
process. Apart from that, there are also methods named RRT*-Connect (Chen et al., 2021;
Kuffner, 2000; Zhang et al., 2018), which adopts the working principle of RRT-Connect
expansion while maintaining the node reconnection process. Meanwhile, to increase optimality,
RRT* was developed by implementing triangle inequality (Mashayekhi et al., 2020; Noreen et
al., 2016; Suwoyo et al., 2023; Z. W u et al., 2021). The use of a loose method like this is intended
to optimize node determination when connection is made. So the node connection actually
provides the shortest path. However, if you pay attention, both of them only solve partial problems
of RRT*. So, a method emerged and was introduced with the name Informed RRT*. Informed
RRT* (Mashayekhi et al., 2020; Naderi et al., 2015) uses sampling that is biased towards the
informed region, it excels in scenarios where an initial estimate of the optimal path is available,
resulting in a more efficient exploration process. Additionally, it uses heuristics to guide the
sampling process, by combining prior knowledge or domain-specific information. This heuristic
guidance improves the exploration process by intelligently directing the algorithm to promising
regions. However, the advantages offered can only be fulfilled if an initial solution is obtained.
The initial solution in the Informed-RRT* algorithm still relies on random sampling methods and
conventional rewiring processes. Although an optimal solution can be achieved, this often
sacrifices the convergence speed at the beginning of the search. As a result, even if an optimal
solution is found eventually, the initial progress tends to be slow and inefficient, requiring more
iterations to improve the found path. So, it is possible that the optimality offered is not balanced
with a good convergence rate at the start.

Based on this phenomenon, this research proposes an integrated approach between the bias
technique and constraint sampling in the exploration process. Moreover, the nearest node's
ancestor is considered in supporting the rewiring process. Furthermore, based on this approach,
the novel element that will be obtained is a hybrid algorithm to solve path planning problems with
a better level of effectiveness, convergence speed and path optimality. Then based on this novelty,
it can be stated that the proposed method contributes to the development of the path planning
method. Conceptually, the path planning’s core objective is to efficiently explore the search space,
providing a high-quality and optimized path from the initial point to the goal while considering
environmental constraint. The practical implications of this study are improving the efficiency of
path planning for real systems such as robots, autonomous vehicles, or drones, allowing them to
operate more effectively in complex environments. Theoretical implications focus on developing
and refining algorithms in path planning, providing new insights and innovations in the theory
underlying the methods used. Thus, this study not only provides direct benefits for practical
applications, but also enriches the knowledge base in the field of route planning. Informed RRT*
incorporates an informed sampling strategy, focusing exploration efforts on regions that are likely
to contribute to the optimal path. This is achieved by biasing sampling towards areas that have
not been adequately explored. It utilizes heuristics to guide the sampling process, leveraging prior
knowledge about the environment or problem-specific information. This guidance helps in
achieving a more directed and efficient exploration. This process is conducted as an optimization
stage when the initial feasible path found. That makes, the informed RRT* has been known as the
method cares about optimality path. It maintains the core principle of RRT* by ensuring
asymptotic optimality. In other words, as the number of iterations increases, Informed RRT*
converges towards the optimal solution, providing a high-quality path. Moreover, it allows for
incremental refinement of the existing tree structure, adapting to new information and
dynamically adjusting the search strategy. This flexibility is particularly beneficial in dynamic
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environments. Because of it, the demonstration of effectiveness in high-dimensional
configuration spaces, making it suitable for complex robotic systems with numerous degrees of
freedom. However, the algorithm's complexity may be a limiting factor, especially in scenarios
with real-time constraints or resource-limited platforms. Besides that, the effectiveness of
Informed RRT* is contingent on the quality of the heuristic guidance, and choosing appropriate
heuristics can be a non-trivial task contains brief and concise research backgrounds, and
objectives.

The rest of this paper is organized as follows: Section Il presents the theoretical of informed-
RRT*, the bias techniques adopted for speeding up the exploration, and constraint sampling to
deals with slow convergence speed before the initial path is found. Moreover, in the same section,
the wiring process adopted from RRT™* is again explained; Section 11 presents how the proposed
method is designed. Section IV presents the results of several type of algorithm such as RRT*,
Fast-RRT (Jeong et al., 2015; Q. Li et al., 2022; Z. Wu et al., 2021b), Informed-RRT*, and the
proposed method; Section V presents the conclusion stated based on the comparative analysis
from Section IV.

2. Literature Review

Let X € R™ is representation of state space for a path planning problem, with n € N is space
dimension, thus X = {X, 5, X1} 1S state space with X,,,,; € X refers to obstacle coordinates and
Xeree € Xrefers to the free space. Moreover, if the start node x;,,;, € Xf,.., and goal node x,,,
Xgoal € Xrrecare given, then referring to X, the path planning algorithm has to find the ideal
path from-to those nodes, denoted as g = [0, T] = Xppee With 0(0) = X aNd 0(T) = xgoa
where Xgoa1 = {x € X|x — xgoal| < r} for - is radius around x4,

Before RRT* was introduced, RRT was first known to researchers as a method that solves
path planning problems, by applying a sampling-based technique to the space of planning
problems. If the information on the starting point, the end point or target, and all obstacles
in the environment, RRT first performs path expansion. This expansion begins by
generating random nodes in the planning problem area. Based on these random nodes,
the nearest node is then detected as a reference for connecting new nodes. A new node is
a node that is placed in a position between a random node and the nearest node. If the
distance between the random node and the nearest node is smaller than the specified
distance, then the random node is automatically considered a new node. The new node is
then connected to the nearest node by considering whether there is a collision with an
existing obstacle or not. If a collision occurs, the new node is not registered, and instead
the new node is registered as a member node of the existing candidate path. By applying
this method, expansion is carried out in the next iteration and will stop when the new node
is in the area around the goal point. This process produces a safe path quickly even in
large areas. However, the obstacle of the RRT method itself is its weakness towards
optimality. So that RRT* is introduced with the addition of a rewiring process. This
process is the process of determining the relationship between a new node and the nearest
node. By considering other nodes, the route that will be generated is considered. The new
node will be connected to the node closest to it and will be connected to the node that will
produce a shorter distance. Rewiring that is done simultaneously every time a new node
is found makes RRT* guarantee convergence to produce an optimal solution along with
increasing sampling repetitions. The flowchart representing the working principle of both
algorithms can generally be described as shown in Fig. 1.
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Fig. 1. Working Principle of RRT (a) and RRT* (b)

The working principle of RRT* can be seen in the pseudocode of Algorithm 1. As seen
in Fig. 1, the difference between RRT and RRT* is in the rewiring process. So, it can be
said that removing the 12th line means that Algorithm 1 becomes RRT.

Algorithm 1 RRT*

Require: Z, z., 4t
1.

el
N = o

13.

© o N O~ Db

Zgoal

T « insertNode(zg,,,, T)

while ||z — Zgoal” >rdo

Zrana < Sample(Z)
Znear < Near(zrand: T)
« Steer(z, .4, StepSize)

)then

ZTLEW Znear'

if CollisionFree(z,,,, Znear Zobs

Znear « NearN(T, z,,.,)

« ChooseParent(z

Xmin near)

endif
T « insertNode(z,,,,)

T « Rewire(zmin,Znew )

end while

Procedurally, this is what causes the optimality of RRT* to only be obtained when there
is a continuous iteration. Or simply, optimality is achieved when the maximum number
of samplings is increased and goes to infinity. On this basis, several algorithms such as
Smart-RRT* and Informed-RRT* emerged. Although, it also highly depends on the large
number of samplings, the optimality of the path produced by Smart-RRT* can be
achieved by utilizing sampling in the area near the beacon, the nodes connecting the start
to goal point (Islam et al., 2012; Nasir et al., 2013; Noreen et al., 2016; Suwoyo et al.,
2023). This sampling is limited by a circle with a radius of Tpeqcon and centered on
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Zpeacon- This sampling is an alternative to uniform sampling from RRT* when the initial
path is found. Every time an iteration in this optimization process shows a specified
multiple, sampling is performed. Thus, the optimality of the path is more promising with
several repetitions that are not as large as RRT*. Technically, this smart sampling will
replace the command in line 4 of Algorithm 1, which was previously marked by the
existence of an initial path and a specified multiple. While in informed-RRT*, admissible
ellipses limit the sampling area that is allowed when the initial path is found. Every time
there is a unique path with a better cost value, this ellipse then shrinks so that it can focus
sampling in the area around the path. The ellipse formed is highly dependent on the path
formed, the cost of the path, and the direct distance between the starting point and the
goal point. The ellipse is formed by assuming the distance between the starting and ending
points as the focus, while the cost of the path is the major axis. This arrangement makes
sampling centralized and the efficiency of path search increases. High sample size
remains a major challenge. In environments with many obstacles or with many narrow
spaces, Smart-RRT* often requires many samples just to find an initial feasible path. This
results in high computational costs and slows down convergence in the early stages. This
problem arises due to the nature of sample-based algorithms, where the process of
randomly sampling and connecting valid configurations can be very slow, especially in
narrow spaces. The pseudocode of this sampling method can be seen in Algorithm 2.

Algorithm 2 Sample(zgq,+, Zgoals a)

if a < oo then

a < "Zstart - Zgoal”2

Zcentre < (Zstart + Zgoal) *0.5

R « RotationtoWorldFrame(zsmm Zgoal)

be (V@ —c2))*05

L « diag{a,b}

1
2
3.
4
5

Zpau < SampleUnitBall

6
7
8. Zrand < RLZball + Zcentre
9 else

10. Zrand U(Z)
11. endif

12, return z,,,4

In this case, the ellipse's semi-major axis length is denoted by q, its semi-minor axis
length by b, its half focal length by c, its centre by xcentre, its rotation matrix by R, its
diagonal matrix for stretching transformation by L, its sampling point in the unit circle by
Zpau, and its final sampling point by z,,,4. To create the sampling point (x, y) inside the
ellipse, point (x, y,) is randomly sampled from a unit circle using the Informed-RRT*
algorithm and then stretched. The transformation equation is

LI=15 I15) ®

The ellipse has to be rotated after this conversion transformation such that its major axis
lines up with the line that connects the starting point and the target point. By knowing the
middle point coordinates connecting the starting and goal points, and the rotated
coordinate (x,y), the sampling node in the region of ellipse (X;qna> Vrang) Can be
obtained as
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rma= 0] 1]+

Where R is a two-dimensional rotation matrix expressed as follows
R = [cos 6 —siné (3)
sinf cosf
where 9 is the angle formed by the line between the beginning point, the target point, and
the x-axis. Meanwhile for the middle coordinates of the line that directly connects the
starting and goal points can be calculated as follows

)3 @+ ) g

Vstart Ygoal

3. Proposed Method

Basically, informed-RRT* utilizes RRT* in the exploration process to find the initial path.
Random and uncertain sampling makes this process take a long time. Instead of being able to
determine the optimal path, blind search like this is unable to handle complex environmental
problems such as mazes with close distances between Zy,.., and Z,,s. On this basis, a sampling
method that prioritizes expansion speed is proposed. In addition to sampling restrictions on areas
that have not been explored, this sampling method also applies a bias technique. Both have a role
to ensure that there is a process of connecting the start to the goal point quickly and ensuring that
each determination of a new node can avoid obstacles in narrow areas. Both of these sampling
methods are adopted from improved-RRT which contains fast-RRT. Unlike fast-RRT, rewiring
the process is applied to ensure that in addition to being able to get a path quickly, the resulting
path is also shorter. Conceptually, this sampling can be done by first generating uniform sampling,
and producing z,q4,4. After z,.,,,4 is Obtained, the nearest node is searched for, to determine the
location of z,,,,. After the coordinates of z,,,, are found, its position in relation to the collection
of nodes in the tree is then observed. If the z,., position is a smaller distance calculated from
any node in the tree, then z,,,,, is declared invalid, and uniform sampling is performed again.
This cycle repeats until z,,,, is more than or equal to 75 to any node in the tree. This process will
make z,,,, always in an unexplored space. This concept can be described as shown in Fig. 2.

Zrandz

Zrandi is initially
generated, once it lies on
explored area, it is invalid
and  Zygnaz is then
generated. When the
status is invalid, z.qng
will always be generated
until it is in the area of
unexplored one.

Fig. 2. Concept of Sampling Restriction

Not only is the sampling repeated in an explored area, every z,,,, obtained is indicated as not
collision-free, it also makes the expansion process slow and even stack when planning in corridors
with a width smaller than the sample size. Referring to this problem, random steering is proposed
as a method to bias z,,,, in a direction that is free from collisions. In addition to z,,,, being
confirmed to be in an unexplored area, z,,,, is also forced to be able to penetrate obstacles if a
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collision is indicated to occur with any obstacle in the environment. This process can be illustrated
as follows in Fig. 3.

When 2., is indicated to be in a
position that would cause a
collision with one of the

obstacles, the position of 2y, is
updated. This is done by
randomly changing &, until the
relationship between 2z, and
Zpeqr is free from being felt and
B, becomes 8,

Fig. 3. Bias Sampling Principle

Bias sampling ensures that the new node placement is in Zy,..., and its connections are collision-
free. As shown in Fig. 3, this process is done by generating theta_new when the theta_old
(connection direction z,.,, 10 z,.4 ) results in an invalid or collides to any obstacle. This bias
sampling is repeated in the exploration process after the random node is generated untill the initial
path is found. With bias sampling and sampling restriction techniques, the direction of path
exploration can be improved with better effectiveness of random node placement. Random
steering adjusts the direction of the search tree to be more focused, while fast sampling prioritizes
regions that have a higher chance of finding valid paths. The combination of these two techniques
speeds up the search and convergence process without sacrificing the quality of the solutions
found. In the implementation of the limitation of the maximum number of sampling is often a
measure of whether an algorithm can complete a task quickly or not. So when the initial path is
found, the remaining amount allowed for sampling can be used to optimize the path, namely by
applying sampling restrictions only to the ellipses on the informed-RRT*.

Algorithm 3 Enhanced IRRT*
Require: Z, ze,4r¢,

Zgoal
1. T « initializeTree(i:
2. T « insertNode(z,,,, T)
3. while it < maxIt and ||z — Zgoal” >rdo
4 if initialPathFound
Zrana < IRRTStarSampling(Z)
else
Zrana < FastSampling(Z)
endif
Znear < Near(zrandr T)
StepSize)
)then

« BiasSteer(z, 4,

Znew Znearr

if CollisionFree(z,,.,,, Znear» Zobs

Znear « NearN(T, z,,,,,)

© ®©® N oG

« ChooseParent(7

Xmin near)
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10. endif
11. T « insertNode(z,,,,)
12. T « Rewire(z,,;n, Znow )

13.  end while
14.  pathOptimized(T)

Conversely, if the initial path is found slowly or requires a large sampling repetition, the sampling
available for optimization becomes limited and the optimization cannot work optimally. This
factor is the basis for the proposal of a fast and effective sampling method to improve the
performance of the informed-RRT* in obtaining the optimal path in a short time. The concept of
the proposed method can be seen in Algorithm 3.

As can be seen from Algorithm 3, the fast sampling and random steering method is used when
the initial path is not found yet. Fast sampling prioritizes areas of the space that are more likely
to yield valid paths, thus reducing unproductive samples and speeding up the search process. On
the other hand, random steering directs the search tree expansion to more promising areas,
reducing the time spent on exploration in irrelevant areas. Thus, the sampling efficiency in path
planning before the initial path is found can be greatly improved in complex, narrow, and corridor
areas. To clearify the optimization process the Algoritm 4 is presented (it represents
IRRTStarSampling on Algorithm 3).

Algorithm 4 IRRTStarSampling

1 ife, <o

2 Zstart + Zgoal
Zcentre 2
3 C « RotateToWorldFrame(z,,,,,, Zgoal)
C
4 max
r < 2
5 Cmin < ”Zgoal - Zstart”Z
6 {Ti}izz,,,,,n < 0.5+« (C‘rznax - Cminz)l/2
7 L < diag(ry, 1y, ..., 1)
8 Zpqu — SampleUnitBall
9 Zrand < (CLZball + Zcentre) nz
10 else
1 Zrand < U(Z)

12 returng, ..

SampleUnitNBall function, which generates uniformly distributed random samples from the
volume of an n-ball of radius one centered at the origin. In this case, an n-ball is a geometric shape
that is a generalization of a sphere in a higher-dimensional space, and this function samples points
uniformly within the volume of the ball. The notation xpait ~ U(Zpai) Means that the generated
points (xpqy) follow a uniform distribution (U) in the unit ball space. Thus, this function is used
to sample random points in n-dimensional space that lie within the unit ball. Thus, in the
optimization process, the generated random nodes will be on the ellipse formed based on the
positions of z_start and z_goal. The use of this ellipse also allows optimization to reduce sampling
in unnecessary spaces, so that it still directs the search towards areas that are more likely to
produce the best path. Unlike the initial path search process, in this optimization process the
BiasSteering function (Algorithm 3 line 6) is replaced with the steer function (see Algorithm 1
line 6). The optimization process ends when the number of allowed sampling has been met.
Furthermore, as the end of this method, path reduction is applied by referring to the principle of
triangular inequality (see Smart-RRT*).
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4. Results and Discussions

In this section, the results of the different algorithm tests, namely RRT*, Fast-RRT*, RRT*-
Smart, Informed-RRT*, and the proposed algorithm, are described. The tests were conducted on
a PC with the following specifications: processor: 3.6 GHz Quad-Core Intel Core i3; graphics:
Intel UHD Graphics 630 1536 MB, and memory: 8 GB 2667 MHz DDR4. The tests were
conducted in various types of maze environments from simple to complex, as seen in Fig. 4.
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Fig. 4. Different Maze Environment used to Evaluate the Performance of RRT*, Fast-RRT*,
RRT*-Smart, Informed-RRT*, and Proposed Method

The environment shown in Fig. 4 is commonly used as a benchmark for testing path planning
algorithms. Fig. 4 (a) is a maze environment adopted from (Bastapure et al., 2023) by placing the
starting position at (15, 35) and (45, 5). With increased complexity, especially in the complexity
and distance between the starting point and the goal point, the 2nd maze environment was adopted
from (Nasir et al., 2013). In this arena shown in Fig. 4 (b), the starting point is at (15,105) and the
goal point is at (75,5). Furthermore, Fig. 1 also shows that the various algorithms are tested for
both their working speed and optimality in an environment with high complexity and narrower
corridor width, see Fig. 4 (c). This environment is proposed to measure the level of speed in
conducting exploration when the corridor is narrowed with the same sampling settings as before.
In this arena, the starting point is positioned at (7,75) and the goal point is positioned at (75,5).
As for the 4th environment shown in Fig. 4 (d), it is an environment adopted from (Sun et al.,
2022) with the designation as a test environment to measure the speed of convergence when the
distance between the starting and goal points is stretched further with only 1 type of road available
that can connect them. The starting and goal points are respectively at positions (5,5) and (145,75).
In this test, all methods are tested to solve the path planning problem in the first maze
environment. This test considers the working speed represented by the number of samplings
needed to obtain the initial solution. In addition, the optimality of the path is also considered,
represented by the lowest distance that can be generated at a given number of samples. Before
testing on the maze environment shown in Fig. 4, the first test was conducted to show the
difference in sampling methods when the initial path is found. This test involves informed-RRT*,
RRT*-Smart, and the proposed method. These sampling techniques can be seen in Fig. 5.
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As shown in Fig. 5, informed-RRT* utilizes the prolate hyper-spheroid formed based on the initial
path found and the distance between the starting and goal points. As seen in Fig. 5 (a), the initial
path found greatly determines the size of the sampling distribution boundary ellipse. By only
utilizing RRT* in sampling in the exploration process, a non-optimal initial path found will widen
the sampling range, so that obtaining optimal paths takes a long time. Unlike informed-RRT*,
sampling in RRT*-Smart focuses on nodes that are members of the solution path, see Fig. 5 (b).
Thus, the non-optimal node relationship causes RRT*-Smart to require more time to improve the
optimality of the final path. While in the proposed sampling method, these two problems can be
solved, as shown in Fig. 5 (b). Although it has exactly the same characteristics as informed-RRT*,
sampling in the optimization process is greatly assisted by an initial path that has better optimality
compared to informed-RRT* and RRT*-smart. This is due to the exploration method that tends
to be in line with the need to obtain optimality, by using fast-RRT*. Thus, optimization can be
carried out optimally.

10
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Proposed Method

Next, testing is carried out in the maze environment 1. In this test, the sampling allowed is 1500
times. In the fast-sampling in Fast-RRT* and the proposed method is set with a radius value of 5
distance units. To measure optimality, the path cost generated by each algorithm is observed. As
seen in Fig. 6 (), and Table 1, the path cost of the proposed method shows the best value, the
lowest of the others. Although too far from informed-RRT* and RRT*-Smart, the cost value
obtained is close to the results of Fast-RRT*, Fig. 6 (b). This shows that the path optimization
after the initial path is found runs more optimally. So, it is clear, the role of Fast-Sampling in this
case has a significant influence, namely in the form of work speed in finding the initial path, and
leaving sufficient optimization work duration. Where this condition cannot be achieved well by
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RRT*-Smart (in Fig. 6 (c)) and Informed-RRT* (in Fig. 6 (d)) which require identical time as

RRT* (in Fig. 6 (a)) to find the initial path.

Table 1 - Path Cost of Different Algorithm’s Solution in Environment 1

N-th Sampling Used to

Path Cost

Algorithm Obtain Initial Path (Units of Length)
RRT* 965 98.4145
Fast-RRT* 206 89.6990
Smart-RRT* 897 97.9063
Informed-RRT* 786 96.4882
Proposed Method 210 89.4719

Next, testing is carried out on environment 2 with the number of samplings allowed is 6000 times.
The setting on fast-sampling in fast-RRT* and the proposed method is 5 units of length, assuming
the robot has a dimension of 1 unit, and with the closest distance to the obstacle is 1 unit as tested
in all environments. The results of the second test can be seen in Fig. 7.
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Fig. 7. Performance of Different Algorithm in Solving A Path Planning Problem in
Environment 2 (a) RRT*, (b) Fast-RRT*, () RRT*-Smart, (d) Informed-RRT*, and (e)
Proposed Method

The results of the second test are shown in Fig. 7. As seen in Fig. 7 and Table 2, RRT*, Informed-
RRT*, and RRT*-Smart require around 4000 samplings, three times larger than Fast-RRT* and
the proposed method. Thus, the remaining sampling amount that becomes the duration of path
optimization in Informed-RRT* and RRT*-Smart becomes very short, which is around 2000
repetitions on more complex problems and far from the starting and goal points. This has an
impact on the high cost path, because optimization cannot run properly. On the other hand, with
3 times faster initial path found, informed-RRT* and the proposed method have a better duration
to perform optimization. However, optimization techniques that apply fusion, relying on other
alternative paths, in narrow corridor areas are no longer ideal. This is due to the limited sampling
in the arena to obtain other different paths that are very rare. This incident is a factor, even though
it has enough time to perform optimization, fast-RRT* is not good enough compared to the
proposed method. In contrast to the incident, by utilizing the ellipse that limits the sampling, the
proposed method can maximize the optimality of the formed path even in a narrow corridor. This
basis makes the optimality of the proposed method better than all the methods tested. To be able
to pay more attention to this difference, Table 2 is presented.

Table 2 - Path Cost of Different Algorithm’s Solution in Environment 2

Algorithm N-th Sampling Used to Path Cost
Obtain Initial Path (Units of Length)

RRT* 3801 180.2745

Fast-RRT* 2312 176.1436

Smart-RRT* 3953 175.4582

Informed-RRT* 3743 171.2413

Proposed Method 1906 169.5376

Next is the test on the 3rd maze environment with the characteristic of inconsistent width of the
corridor that limits the starting with the goal point. In this test, the number of samples allowed is
10000. Nothing has changed in the parameter settings for fast-sampling in Fast-RRT* and the
proposed method. In this test, each for RRT*, Fast-RRT*, Smart-RRT*, informed RRT*, and the
proposed method requires 7753, 5193, 7145, 7383, and 5041 repetitions to obtain the initial path,
respectively (see Fig. 8 and Table 3). So, the optimization duration for RRT*, Smart-RRT*,
informed-RRT* is around 2000s and for Fast-RRT* and the proposed method is 4000s.
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Fig. 8. Performance of Different Algorithm in Solving A Path Planning Problem in
Environment 3 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e)

Proposed Method

As seen in Fig. 8 (a), 2000 random sampling repetitions relying on process rewiring, make RRT*
able to produce a path with an optimality value of 179.3416. While Smart-RRT* actually
produces a path cost value of 176.1705. Although slightly different, this incident shows that in
limited sampling conditions, and the width of the space variant has an impact on the optimization
process that cannot be maximized. While in a limited time of around 2000 repetitions, informed-
RRT* can do better optimization and produce a shorter cost path, which is 136.1736. Thus, in the
3rd environment, optimization utilizing the bounding ellipse is more ideal than utilizing the
sampling technique in the area around the beacon. In addition to strengthening the advantages of
informed-RRT¥, this incident also underlies that the proposed method with a wide duration has
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the potential to provide optimal results. This statement can be emphasized by the results shown
by the proposed method. With around 4000 samplings, the proposed method can optimize the
optimization process using ellipse restrictions. Although this value is considered sufficient to
perform the optimization process even with the fusion path technigue, the results shown by the
proposed method again explain that the optimization technique in the proposed method is indeed
better and ideal. The node position of the initial path solution has the potential to be in wide and
narrow areas, so the fusion process will have a good effect only in wide spaces, while in narrow
areas it will be normal. This statement makes Fast-RRT* have a value that is still lacking
compared to the proposed method and informed-RRT*, which is 138.3276.

Table 3 - Path Cost of Different Algorithm’s Solution in Environment 3

Algorithm N-th Sampling Used to Path Cost
Obtain Initial Path (Units of Length)

RRT* 7753 179.3416

Fast-RRT* 5193 138.3276

Smart-RRT* 7145 176.1705

Informed-RRT* 7383 136.1736

Proposed Method 5041 133.0854

Furthermore, to re-test the consistency, the proposed method and other methods are compared
again in solving the problem of environment 4. The sampling allowed for solving this problem is
15,000 because the span of the starting and goal points tends to be further with the parameter
settings than with the solution in environments 1, 2, and 3. In contrast to the previous
environmental conditions, in environment 4 there is only 1 type of road that can connect the
starting and goal points.
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Fig. 9. Performance of Different Algorithm in Solving A Path Planning Problem in
Environment 4 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e)
Proposed Method

Based on Fig. 9, it can be seen that fast-sampling in fast-RRT* and the proposed method can
accelerate the initial path acquisition. Bias technique provides an influence to be able to reach
unexplored areas while constraint sampling reduces complexity when expanding in areas with
narrower widths. Based on this approach, fast-RRT* and the proposed method can find the initial
path quickly with a sufficient level of optimality. In contrast to only utilizing random sampling
and process rewiring. RRT*, Smart-RRT*, and informed-RRT* take longer and only leave a
narrow search duration for the optimization process. Thus, it can be reaffirmed that providing
acceleration in the initial path search process can increase the ideal level of optimization. As seen
in Fig. 9 (a), Fig. 9 (c) and Fig. 9 (d) the cost path values obtained show the same results. So, it
can be said that the short duration cannot be utilized by informed-RRT* and Smart-RRT* to
perform optimization. This can be proven by comparing it with the cost path generated by fast-
RRT*, see Fig. 9 (b). With sufficient duration to perform optimization, Fig. 9 (b) explains that
complex optimization techniques, such as path fusion, still provide potential for improvement. It
is said to be complex because path fusion does not only depend on the previous path found, but
also on the availability of different new paths. While the new path is unlikely to be obtained in
cases where there is only one type of solution. For this reason, it can be stated again that the
technique of utilizing the prolate hyper-spheroid and a centralized optimization strategy will be
more effective and efficient when the possibility of a new path being generated is low.
Furthermore, to support these statements, Table 4 is presented.

Table 4 - Path Cost of Different Algorithm’s Solution in Environment 4

Algorithm N-th Sampling Used to Path Cost
Obtain Initial Path (Units of Length)

RRT* 11029 307.7048

Fast-RRT* 7157 302.6204

Smart-RRT* 11029 307.7048

Informed-RRT* 11029 307.7048

Proposed Method 5039 291.619

By observing Table 4, it is shown that with a duration of around 4000 is not enough to make
optimization techniques on RRT*, smart-RRT*, and that informed-RRT* is enough to improve
the path value of the formed path. In addition to being influenced by the range of the starting and
goal points, this is also factored by the winding initial path that makes the ellipse wide and the
centralized sampling has the same characteristics as RRT*. This also applies to smart-RRT*, the
formed path stretches from the starting to the goal point winding with a large number of beacons.
So that the optimization technique centered around the beacon cannot work well in a narrow time.
Thus, in cases like this, the optimization time becomes a dominant factor in the aim of increasing
the optimality of the formed path. Referring to the results in environments 1, 2, and 3, it can be
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said that the proposed method can effectively solve problems both in terms of the speed of
obtaining the initial path and the optimality of the resulting path.

5. Conclusion

The optimization process of informed-RRT* depends on when the initial path is found.
Technically, informed-RRT* utilizes the way RRT* finds the initial path. Because of this method,
the duration to get the path becomes long because there is no directional sampling in RRT*. In
addition, the exploration that jumps and random makes this method inefficient in large-scale and
complex environments. The path optimization provided by informed-RRT* is only achieved
when the duration is sufficient. The long duration to find the initial path reduces the duration of
path optimization in limited actions. For this reason, bias and constraint sampling are involved in
this study to ensure that the exploration process does not repeat itself in areas that have been
explored. Based on the results that have been presented previously, an average decrease in the
path cost value of 3.94% is obtained, which is an increase in the optimality of informed-RRT* to
the proposed method. This achievement is supported by the work of the proposed method which
is faster with an average acceleration value of 47.90% compared to the base method, informed-
RRT. This shows that the proposed method has a better convergence rate and optimality than the
previous method.
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