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ABSTRACT  

Informed RRT* has been mentioned as a great method to find feasible and optimal solution of path 

planning. Technically, it uses the prolate hyper-spheroid and a centralized optimization strategy to gain 

the optimality of path. This optimization process is started when the initial feasible solution is found. 

Conventionally, the traditional procedure of RRT* is used to connecting starting point and goal point 

feasibly. Therefore, it is not suppressing if the optimization process begins later in large coverage of path 

planning problem. For this reason, a new strategy needs to propose with an objective to speed up the 

convergence rate by reducing the inefficiency of its blind sampling. Sequentially, it is conducted by 

integrating the bias technique and constraint sampling to replace the traditional sampling method. Next, 

the nearest node's ancestor is taken into consideration up until the first stage of choosing the parent is less 

expensive then RRT*. Regarding to these offers and the comparative results, the performance of the 

proposed method has shown better performance compared to its predecessor in terms of optimality, 

indicated by a decrease in finding the initial path by an average acceleration of 47.90% and a convergence 

rate indicated by an average path cost decrease value of 3.94%.  

Keywords : Informed RRT *, Bias Technique, Constraint Sampling, Convergence Rate, Optimality 

 

1. Introduction  

In certain scenarios, the robot concurrently undertakes exploration and Simultaneous Localization 

and Mapping (SLAM) tasks Wang et al., 2010; Yu et al., 2014). SLAM facilitates the 

determination of marginalized poses and the initial unknown map, supporting the robot's 

autonomy. This assumption arises from the efficiency of these tasks, allowing the robot to 

primarily focus on deciding the goal point from any initial position (L. Li et al., 2018; Tian, 

Suwoyo, Wang, & Li, 2019; Tian et al., 2019; Wen et al., 2015). The subsequent finding of a 

feasible and safe path is termed global path planning, while the tracing process is referred to as 

path tracking. Effective path planning is crucial before the robot transitions from its current to a 

desired pose to generate the reference path.  Basically, there are two classifications based on how 

expansion is carried out, namely sampling-based methods and search-based methods. Search-

based methods such as Breath First Search (BFS) (S. E. (Sakaria) Ginting & Sembiring, 2019) , 

Depth First Search (DFS)(El-Ghoul et al., 2008; S. E. Ginting & Sembiring, 2019), Dijkstra 

(Rachmawati & Gustin, 2020) , and A* (Al-Ansarry & Al-Darraji, 2021; Rachmawati & Gustin, 

2020; Ran et al., 2021; Wang et al., 2021), offer a high degree of path optimality. However, it has 

a slow convergence speed. Meanwhile, sampling-based methods tend to have low optimality but 

can work quickly. Researchers consider overcoming the speed of search methods more difficult 

than improving the optimality of sampling-based methods. This is relatively the basis that 

influences the rapid development of sampling-based methods. Rapidly-Exploring Random Trees 

(RRT) is the method that is considered to have initiated this development (J. Li et al., 2014; 

Noreen et al., 2016). As the name suggests, RRT works by generating a random tree consisting 

of nodes that represent positions in the robot or vehicle configuration space. This tree is generated 

randomly by adding new nodes based on randomness in the configuration space, then connecting 

these nodes with the closest nodes that have been created previously. Even though it has been 

able to solve the path planning problem, the solution provided is far from optimal. This is caused 

by an undirected random sampling process. So, by implementing the node reconnection stage, 
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RRT develops with the name RRT*. With this reconnection process, RRT* can improve the 

solution with a recursive iteration process. However, in a large environment, the time required to 

produce an optimal solution is as if infinite. This became a problem that was then paid attention 

to. In an effort to increase speed, this method is often combined with methods such as Potential 

Field (Min et al., 2015; D. Wu et al., 2022; Xinying et al., 2006), Genetic Algorithm (Chen & 

Qin, 2011; Dain, 1998; Ni et al., 2016; Suwoyo et al., 2018; Yusuf & Musdholifah, 2024; Zhou 

et al., 2012), Ant Colony Optimization (Bozorg-Haddad et al., 2017; Juang et al., 2018a), 

Artificial Bee Colony (Chen et al., 2017; Suwoyo et al., 2024), Particle Swarm Optimization 

(Adriansyah et al., 2019; Agrawal & Shrivastava, 2017; Jiang et al., 2017), and Neural Network 

(Bingul et al., 2005; Caceres et al., 2017; Ibarra-Pérez et al., 2022), to produce a directed search 

process. Apart from that, there are also methods named RRT*-Connect (Chen et al., 2021; 

Kuffner, 2000; Zhang et al., 2018), which adopts the working principle of RRT-Connect 

expansion while maintaining the node reconnection process. Meanwhile, to increase optimality, 

RRT* was developed by implementing triangle inequality (Mashayekhi et al., 2020; Noreen et 

al., 2016; Suwoyo et al., 2023; Z. W u et al., 2021). The use of a loose method like this is intended 

to optimize node determination when connection is made. So the node connection actually 

provides the shortest path. However, if you pay attention, both of them only solve partial problems 

of RRT*. So, a method emerged and was introduced with the name Informed RRT*. Informed 

RRT* (Mashayekhi et al., 2020; Naderi et al., 2015) uses sampling that is biased towards the 

informed region, it excels in scenarios where an initial estimate of the optimal path is available, 

resulting in a more efficient exploration process. Additionally, it uses heuristics to guide the 

sampling process, by combining prior knowledge or domain-specific information. This heuristic 

guidance improves the exploration process by intelligently directing the algorithm to promising 

regions. However, the advantages offered can only be fulfilled if an initial solution is obtained. 

The initial solution in the Informed-RRT* algorithm still relies on random sampling methods and 

conventional rewiring processes. Although an optimal solution can be achieved, this often 

sacrifices the convergence speed at the beginning of the search. As a result, even if an optimal 

solution is found eventually, the initial progress tends to be slow and inefficient, requiring more 

iterations to improve the found path. So, it is possible that the optimality offered is not balanced 

with a good convergence rate at the start.  

Based on this phenomenon, this research proposes an integrated approach between the bias 

technique and constraint sampling in the exploration process. Moreover, the nearest node's 

ancestor is considered in supporting the rewiring process. Furthermore, based on this approach, 

the novel element that will be obtained is a hybrid algorithm to solve path planning problems with 

a better level of effectiveness, convergence speed and path optimality. Then based on this novelty, 

it can be stated that the proposed method contributes to the development of the path planning 

method. Conceptually, the path planning’s core objective is to efficiently explore the search space, 

providing a high-quality and optimized path from the initial point to the goal while considering 

environmental constraint. The practical implications of this study are improving the efficiency of 

path planning for real systems such as robots, autonomous vehicles, or drones, allowing them to 

operate more effectively in complex environments. Theoretical implications focus on developing 

and refining algorithms in path planning, providing new insights and innovations in the theory 

underlying the methods used. Thus, this study not only provides direct benefits for practical 

applications, but also enriches the knowledge base in the field of route planning. Informed RRT* 

incorporates an informed sampling strategy, focusing exploration efforts on regions that are likely 

to contribute to the optimal path. This is achieved by biasing sampling towards areas that have 

not been adequately explored. It utilizes heuristics to guide the sampling process, leveraging prior 

knowledge about the environment or problem-specific information. This guidance helps in 

achieving a more directed and efficient exploration. This process is conducted as an optimization 

stage when the initial feasible path found. That makes, the informed RRT* has been known as the 

method cares about optimality path. It maintains the core principle of RRT* by ensuring 

asymptotic optimality. In other words, as the number of iterations increases, Informed RRT* 

converges towards the optimal solution, providing a high-quality path. Moreover, it allows for 

incremental refinement of the existing tree structure, adapting to new information and 

dynamically adjusting the search strategy. This flexibility is particularly beneficial in dynamic 
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environments. Because of it, the demonstration of effectiveness in high-dimensional 

configuration spaces, making it suitable for complex robotic systems with numerous degrees of 

freedom. However, the algorithm's complexity may be a limiting factor, especially in scenarios 

with real-time constraints or resource-limited platforms. Besides that, the effectiveness of 

Informed RRT* is contingent on the quality of the heuristic guidance, and choosing appropriate 

heuristics can be a non-trivial task contains brief and concise research backgrounds, and 

objectives.  

The rest of this paper is organized as follows: Section II presents the theoretical of informed-

RRT*, the bias techniques adopted for speeding up the exploration, and constraint sampling to 

deals with slow convergence speed before the initial path is found. Moreover, in the same section, 

the wiring process adopted from RRT* is again explained; Section III presents how the proposed 

method is designed. Section IV presents the results of several type of algorithm such as RRT*, 

Fast-RRT (Jeong et al., 2015; Q. Li et al., 2022; Z. Wu et al., 2021b), Informed-RRT*, and the 

proposed method; Section V presents the conclusion stated based on the comparative analysis 

from Section IV.  

 

2. Literature Review 

Let 𝑋 ∈ 𝑅𝑛 is representation of state space for a path planning problem, with 𝑛 ∈ 𝑁 is space 

dimension, thus 𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑓𝑟𝑒𝑒} is state space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle coordinates and 

𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋refers to the free space. Moreover, if the start node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒 and goal node 𝑥𝑔𝑜𝑎𝑙   

𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒are given, then referring to 𝑋𝑜𝑏𝑠, the path planning algorithm has to find the ideal 

path from-to those nodes, denoted as 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒 with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡 and 𝜎(𝑇) = 𝑥𝑔𝑜𝑎𝑙 

where 𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟} for 𝑟 is radius around 𝑥𝑔𝑜𝑎𝑙.      

Before RRT* was introduced, RRT was first known to researchers as a method that solves 

path planning problems, by applying a sampling-based technique to the space of planning 

problems. If the information on the starting point, the end point or target, and all obstacles 

in the environment, RRT first performs path expansion. This expansion begins by 

generating random nodes in the planning problem area. Based on these random nodes, 

the nearest node is then detected as a reference for connecting new nodes. A new node is 

a node that is placed in a position between a random node and the nearest node. If the 

distance between the random node and the nearest node is smaller than the specified 

distance, then the random node is automatically considered a new node. The new node is 

then connected to the nearest node by considering whether there is a collision with an 

existing obstacle or not. If a collision occurs, the new node is not registered, and instead 

the new node is registered as a member node of the existing candidate path. By applying 

this method, expansion is carried out in the next iteration and will stop when the new node 

is in the area around the goal point. This process produces a safe path quickly even in 

large areas. However, the obstacle of the RRT method itself is its weakness towards 

optimality. So that RRT* is introduced with the addition of a rewiring process. This 

process is the process of determining the relationship between a new node and the nearest 

node. By considering other nodes, the route that will be generated is considered. The new 

node will be connected to the node closest to it and will be connected to the node that will 

produce a shorter distance. Rewiring that is done simultaneously every time a new node 

is found makes RRT* guarantee convergence to produce an optimal solution along with 

increasing sampling repetitions. The flowchart representing the working principle of both 

algorithms can generally be described as shown in Fig. 1. 
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(a) (b) 

Fig. 1. Working Principle of RRT (a) and RRT* (b) 

The working principle of RRT* can be seen in the pseudocode of Algorithm 1. As seen 

in Fig. 1, the difference between RRT and RRT* is in the rewiring process. So, it can be 

said that removing the 12th line means that Algorithm 1 becomes RRT.  

Algorithm 1 RRT* 

Require: 𝑍, 𝑧𝑠𝑡𝑎𝑟𝑡, 𝑧𝑔𝑜𝑎𝑙 

1. 𝑇 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑇𝑟𝑒𝑒(⬚)    

2. 𝑇 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑧𝑠𝑡𝑎𝑟𝑡, 𝑇)    

3. 𝒘𝒉𝒊𝒍𝒆 ‖𝑧 − 𝑧𝑔𝑜𝑎𝑙‖ ≥ 𝑟 𝒅𝒐   

4.  𝑧𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑍)  

5.  𝑧𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑧𝑟𝑎𝑛𝑑, 𝑇)  

6.  𝑧𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟(𝑧𝑟𝑎𝑛𝑑, 𝑧𝑛𝑒𝑎𝑟 , 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒)  

7.  𝒊𝒇 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟 , 𝑍𝑜𝑏𝑠
)𝒕𝒉𝒆𝒏  

8.  𝑍𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟𝑁(𝑇, 𝑧𝑛𝑒𝑤
)  

9.  𝑥𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑍𝑛𝑒𝑎𝑟
)  

10.  𝒆𝒏𝒅 𝒊𝒇  

11.  𝑇 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑧𝑛𝑒𝑤
)  

12.  𝑇 ← 𝑅𝑒𝑤𝑖𝑟𝑒(𝑧𝑚𝑖𝑛 , 𝑧𝑛𝑒𝑤  )  

13. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆   

Procedurally, this is what causes the optimality of RRT* to only be obtained when there 

is a continuous iteration. Or simply, optimality is achieved when the maximum number 

of samplings is increased and goes to infinity. On this basis, several algorithms such as 

Smart-RRT* and Informed-RRT* emerged. Although, it also highly depends on the large 

number of samplings, the optimality of the path produced by Smart-RRT* can be 

achieved by utilizing sampling in the area near the beacon, the nodes connecting the start 

to goal point (Islam et al., 2012; Nasir et al., 2013; Noreen et al., 2016; Suwoyo et al., 

2023). This sampling is limited by a circle with a radius of 𝑟𝑏𝑒𝑎𝑐𝑜𝑛 and centered on 



Suwoyo et al …                                          Vol 7(1) 2025: 1-21 

 

5 

 

𝑧𝑏𝑒𝑎𝑐𝑜𝑛. This sampling is an alternative to uniform sampling from RRT* when the initial 

path is found. Every time an iteration in this optimization process shows a specified 

multiple, sampling is performed. Thus, the optimality of the path is more promising with 

several repetitions that are not as large as RRT*. Technically, this smart sampling will 

replace the command in line 4 of Algorithm 1, which was previously marked by the 

existence of an initial path and a specified multiple. While in informed-RRT*, admissible 

ellipses limit the sampling area that is allowed when the initial path is found. Every time 

there is a unique path with a better cost value, this ellipse then shrinks so that it can focus 

sampling in the area around the path. The ellipse formed is highly dependent on the path 

formed, the cost of the path, and the direct distance between the starting point and the 

goal point. The ellipse is formed by assuming the distance between the starting and ending 

points as the focus, while the cost of the path is the major axis. This arrangement makes 

sampling centralized and the efficiency of path search increases. High sample size 

remains a major challenge. In environments with many obstacles or with many narrow 

spaces, Smart-RRT* often requires many samples just to find an initial feasible path. This 

results in high computational costs and slows down convergence in the early stages. This 

problem arises due to the nature of sample-based algorithms, where the process of 

randomly sampling and connecting valid configurations can be very slow, especially in 

narrow spaces. The pseudocode of this sampling method can be seen in Algorithm 2. 

 Algorithm 2 𝑆𝑎𝑚𝑝𝑙𝑒(𝑧𝑠𝑡𝑎𝑟𝑡, 𝑧𝑔𝑜𝑎𝑙, 𝑎)  

1. if 𝑎 < ∞ then   

2.  𝑎 ← ‖𝑧𝑠𝑡𝑎𝑟𝑡 − 𝑧𝑔𝑜𝑎𝑙‖2
  

3.  𝑧𝑐𝑒𝑛𝑡𝑟𝑒 ← (𝑧𝑠𝑡𝑎𝑟𝑡 + 𝑧𝑔𝑜𝑎𝑙) ∗ 0.5  

4.  𝑅 ← 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑜𝑊𝑜𝑟𝑙𝑑𝐹𝑟𝑎𝑚𝑒(𝑧𝑠𝑡𝑎𝑟𝑡, 𝑧𝑔𝑜𝑎𝑙)  

5.  𝑏 ← (√(𝑎2 − 𝑐2) ) ∗ 0.5  

6.  𝐿 ← 𝑑𝑖𝑎𝑔{𝑎, 𝑏}   

7.  𝑧𝑏𝑎𝑙𝑙 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑈𝑛𝑖𝑡𝐵𝑎𝑙𝑙  

8.  𝑧𝑟𝑎𝑛𝑑 ← 𝑅𝐿𝑧𝑏𝑎𝑙𝑙 + 𝑧𝑐𝑒𝑛𝑡𝑟𝑒  

9. else    

10.  𝑧𝑟𝑎𝑛𝑑 ⋃(𝑍)  

11. end if   

12. return 𝑧𝑟𝑎𝑛𝑑   

In this case, the ellipse's semi-major axis length is denoted by 𝑎, its semi-minor axis 

length by 𝑏, its half focal length by 𝑐, its centre by xcentre, its rotation matrix by 𝑅, its 

diagonal matrix for stretching transformation by 𝐿, its sampling point in the unit circle by 

𝑧𝑏𝑎𝑙𝑙, and its final sampling point by 𝑧𝑟𝑎𝑛𝑑. To create the sampling point (𝑥, 𝑦) inside the 

ellipse, point (𝑥𝑏, 𝑦𝑏) is randomly sampled from a unit circle using the Informed-RRT* 

algorithm and then stretched. The transformation equation is 

[
𝑥
𝑦

] = [𝑎 0
0 𝑏

] [
𝑥𝑏

𝑦𝑏
]     (1) 

The ellipse has to be rotated after this conversion transformation such that its major axis 

lines up with the line that connects the starting point and the target point. By knowing the 

middle point coordinates connecting the starting and goal points, and the rotated 

coordinate (𝑥, 𝑦), the sampling node in the region of ellipse (𝑥𝑟𝑎𝑛𝑑, 𝑦𝑟𝑎𝑛𝑑) can be 

obtained as 



Suwoyo et al …                                          Vol 7(1) 2025: 1-21 

 

6 

 

𝑧𝑟𝑎𝑛𝑑 = [
𝑥𝑟𝑎𝑛𝑑

𝑦𝑟𝑎𝑛𝑑
] = 𝑅 [

𝑥
𝑦

] + [
𝑥0

𝑦0
] (2) 

Where 𝑅 is a two-dimensional rotation matrix expressed as follows 

𝑅 = [cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] (3) 

where 𝜃 is the angle formed by the line between the beginning point, the target point, and 

the 𝑥-axis. Meanwhile for the middle coordinates of the line that directly connects the 

starting and goal points can be calculated as follows 

[
𝑥0

𝑦0
] =

1

2
∗ ([

𝑥𝑠𝑡𝑎𝑟𝑡

𝑦𝑠𝑡𝑎𝑟𝑡
] + [

𝑥𝑔𝑜𝑎𝑙

𝑦𝑔𝑜𝑎𝑙
]) (4) 

 

3. Proposed Method 

Basically, informed-RRT* utilizes RRT* in the exploration process to find the initial path. 

Random and uncertain sampling makes this process take a long time. Instead of being able to 

determine the optimal path, blind search like this is unable to handle complex environmental 

problems such as mazes with close distances between 𝑍𝑓𝑟𝑒𝑒 and 𝑍𝑜𝑏𝑠. On this basis, a sampling 

method that prioritizes expansion speed is proposed. In addition to sampling restrictions on areas 

that have not been explored, this sampling method also applies a bias technique. Both have a role 

to ensure that there is a process of connecting the start to the goal point quickly and ensuring that 

each determination of a new node can avoid obstacles in narrow areas. Both of these sampling 

methods are adopted from improved-RRT which contains fast-RRT. Unlike fast-RRT, rewiring 

the process is applied to ensure that in addition to being able to get a path quickly, the resulting 

path is also shorter. Conceptually, this sampling can be done by first generating uniform sampling, 

and producing 𝑧𝑟𝑎𝑛𝑑. After 𝑧𝑟𝑎𝑛𝑑 is obtained, the nearest node is searched for, to determine the 

location of 𝑧𝑛𝑒𝑤. After the coordinates of 𝑧𝑛𝑒𝑤 are found, its position in relation to the collection 

of nodes in the tree is then observed. If the 𝑧𝑛𝑒𝑤 position is a smaller distance calculated from 

any node in the tree, then 𝑧𝑛𝑒𝑤1
 is declared invalid, and uniform sampling is performed again. 

This cycle repeats until 𝑧𝑛𝑒𝑤 is more than or equal to 𝑟𝑓𝑠 to any node in the tree. This process will 

make 𝑧𝑛𝑒𝑤 always in an unexplored space. This concept can be described as shown in Fig. 2. 

 
Fig. 2. Concept of Sampling Restriction 

Not only is the sampling repeated in an explored area, every 𝑧𝑛𝑒𝑤 obtained is indicated as not 

collision-free, it also makes the expansion process slow and even stack when planning in corridors 

with a width smaller than the sample size. Referring to this problem, random steering is proposed 

as a method to bias 𝑧𝑛𝑒𝑤 in a direction that is free from collisions. In addition to 𝑧𝑛𝑒𝑤 being 

confirmed to be in an unexplored area, 𝑧𝑛𝑒𝑤 is also forced to be able to penetrate obstacles if a 
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collision is indicated to occur with any obstacle in the environment. This process can be illustrated 

as follows in Fig. 3. 

 
Fig. 3. Bias Sampling Principle 

Bias sampling ensures that the new node placement is in 𝑍𝑓𝑟𝑒𝑒, and its connections are collision-

free. As shown in Fig. 3, this process is done by generating theta_new when the theta_old 

(connection direction 𝑧𝑛𝑒𝑤 to 𝑧𝑛𝑒𝑎𝑟 ) results in an invalid or collides to any obstacle. This bias 

sampling is repeated in the exploration process after the random node is generated untill the initial 

path is found. With bias sampling and sampling restriction techniques, the direction of path 

exploration can be improved with better effectiveness of random node placement. Random 

steering adjusts the direction of the search tree to be more focused, while fast sampling prioritizes 

regions that have a higher chance of finding valid paths. The combination of these two techniques 

speeds up the search and convergence process without sacrificing the quality of the solutions 

found. In the implementation of the limitation of the maximum number of sampling is often a 

measure of whether an algorithm can complete a task quickly or not. So when the initial path is 

found, the remaining amount allowed for sampling can be used to optimize the path, namely by 

applying sampling restrictions only to the ellipses on the informed-RRT*.  

 
Algorithm 3 Enhanced IRRT* 

Require: 𝑍, 𝑧𝑠𝑡𝑎𝑟𝑡, 𝑧𝑔𝑜𝑎𝑙 

1. 𝑇 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑇𝑟𝑒𝑒(⬚)    

2. 𝑇 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑧𝑠𝑡𝑎𝑟𝑡, 𝑇)     

3. 𝒘𝒉𝒊𝒍𝒆 𝑖𝑡 < 𝑚𝑎𝑥𝐼𝑡 𝑎𝑛𝑑 ‖𝑧 − 𝑧𝑔𝑜𝑎𝑙‖ ≥ 𝑟 𝒅𝒐   

4.  𝒊𝒇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝐹𝑜𝑢𝑛𝑑  

  𝑧𝑟𝑎𝑛𝑑 ← 𝐼𝑅𝑅𝑇𝑆𝑡𝑎𝑟𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍)  

  𝒆𝒍𝒔𝒆  

  𝑧𝑟𝑎𝑛𝑑 ← 𝐹𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍)  

  𝒆𝒏𝒅 𝒊𝒇  

5.  𝑧𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑧𝑟𝑎𝑛𝑑, 𝑇)  

6.  𝑧𝑛𝑒𝑤 ← 𝐵𝑖𝑎𝑠𝑆𝑡𝑒𝑒𝑟(𝑧𝑟𝑎𝑛𝑑, 𝑧𝑛𝑒𝑎𝑟 , 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒)  

7.  𝒊𝒇 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟 , 𝑍𝑜𝑏𝑠
)𝒕𝒉𝒆𝒏  

8.  𝑍𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟𝑁(𝑇, 𝑧𝑛𝑒𝑤
)  

9.  𝑥𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑍𝑛𝑒𝑎𝑟
)  
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10.  𝒆𝒏𝒅 𝒊𝒇  

11.  𝑇 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑧𝑛𝑒𝑤
)  

12.  𝑇 ← 𝑅𝑒𝑤𝑖𝑟𝑒(𝑧𝑚𝑖𝑛 , 𝑧𝑛𝑒𝑤  )  

13. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆   

14. 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑(𝑇)   

Conversely, if the initial path is found slowly or requires a large sampling repetition, the sampling 

available for optimization becomes limited and the optimization cannot work optimally. This 

factor is the basis for the proposal of a fast and effective sampling method to improve the 

performance of the informed-RRT* in obtaining the optimal path in a short time. The concept of 

the proposed method can be seen in Algorithm 3. 

As can be seen from Algorithm 3, the fast sampling and random steering method is used when 

the initial path is not found yet. Fast sampling prioritizes areas of the space that are more likely 

to yield valid paths, thus reducing unproductive samples and speeding up the search process. On 

the other hand, random steering directs the search tree expansion to more promising areas, 

reducing the time spent on exploration in irrelevant areas. Thus, the sampling efficiency in path 

planning before the initial path is found can be greatly improved in complex, narrow, and corridor 

areas. To clearify the optimization process the Algoritm 4 is presented (it represents 

IRRTStarSampling on Algorithm 3). 

Algorithm 4 IRRTStarSampling 

1 if 𝑐𝑚𝑎𝑥 < ∞    

2 
 

𝑧𝑐𝑒𝑛𝑡𝑟𝑒 ←
𝑧𝑠𝑡𝑎𝑟𝑡 + 𝑧𝑔𝑜𝑎𝑙

2

  

3  𝑪 ← 𝑅𝑜𝑡𝑎𝑡𝑒𝑇𝑜𝑊𝑜𝑟𝑙𝑑𝐹𝑟𝑎𝑚𝑒(𝑧𝑠𝑡𝑎𝑟𝑡, 𝑧𝑔𝑜𝑎𝑙)
   

4 
 

𝑟1 ←
𝑐𝑚𝑎𝑥

2

  

5  𝑐𝑚𝑖𝑛 ← ‖𝑧𝑔𝑜𝑎𝑙 − 𝑧𝑠𝑡𝑎𝑟𝑡‖
2
  

6  {𝑟𝑖
}𝑖=2,…,𝑛 ← 0.5 ∗ (𝑐𝑚𝑎𝑥

2 − 𝑐𝑚𝑖𝑛2)1/2   

7  𝑳 ← 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, … , 𝑟𝑛
)  

8  𝑧𝑏𝑎𝑙𝑙 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑈𝑛𝑖𝑡𝐵𝑎𝑙𝑙  

9  𝑧𝑟𝑎𝑛𝑑 ← (𝑪𝑳𝑧𝑏𝑎𝑙𝑙 + 𝑧𝑐𝑒𝑛𝑡𝑟𝑒
) ∩ 𝑍   

10 else 

11  𝑧𝑟𝑎𝑛𝑑 ← 𝒰(𝑍) 

12 return 𝑧𝑟𝑎𝑛𝑑
 

SampleUnitNBall function, which generates uniformly distributed random samples from the 

volume of an n-ball of radius one centered at the origin. In this case, an n-ball is a geometric shape 

that is a generalization of a sphere in a higher-dimensional space, and this function samples points 

uniformly within the volume of the ball. The notation 𝑥𝑏𝑎𝑙𝑙  ∼ 𝒰(𝑍𝑏𝑎𝑙𝑙) means that the generated 

points (𝑥𝑏𝑎𝑙𝑙) follow a uniform distribution (U) in the unit ball space. Thus, this function is used 

to sample random points in n-dimensional space that lie within the unit ball. Thus, in the 

optimization process, the generated random nodes will be on the ellipse formed based on the 

positions of z_start and z_goal. The use of this ellipse also allows optimization to reduce sampling 

in unnecessary spaces, so that it still directs the search towards areas that are more likely to 

produce the best path. Unlike the initial path search process, in this optimization process the 

BiasSteering function (Algorithm 3 line 6) is replaced with the steer function (see Algorithm 1 

line 6). The optimization process ends when the number of allowed sampling has been met. 

Furthermore, as the end of this method, path reduction is applied by referring to the principle of 

triangular inequality (see Smart-RRT* ). 
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4. Results and Discussions  

In this section, the results of the different algorithm tests, namely RRT*, Fast-RRT*, RRT*-

Smart, Informed-RRT*, and the proposed algorithm, are described. The tests were conducted on 

a PC with the following specifications: processor: 3.6 GHz Quad-Core Intel Core i3; graphics: 

Intel UHD Graphics 630 1536 MB, and memory: 8 GB 2667 MHz DDR4. The tests were 

conducted in various types of maze environments from simple to complex, as seen in Fig. 4.   

  

(a) (b) 

  

(c) (d) 

Fig. 4. Different Maze Environment used to Evaluate the Performance of RRT*, Fast-RRT*, 

RRT*-Smart, Informed-RRT*, and Proposed Method 

The environment shown in Fig. 4 is commonly used as a benchmark for testing path planning 

algorithms. Fig. 4 (a) is a maze environment adopted from (Bastapure et al., 2023) by placing the 

starting position at (15, 35) and (45, 5). With increased complexity, especially in the complexity 

and distance between the starting point and the goal point, the 2nd maze environment was adopted 

from (Nasir et al., 2013). In this arena shown in Fig. 4 (b), the starting point is at (15,105) and the 

goal point is at (75,5). Furthermore, Fig. 1 also shows that the various algorithms are tested for 

both their working speed and optimality in an environment with high complexity and narrower 

corridor width, see Fig. 4 (c). This environment is proposed to measure the level of speed in 

conducting exploration when the corridor is narrowed with the same sampling settings as before. 

In this arena, the starting point is positioned at (7,75) and the goal point is positioned at (75,5). 

As for the 4th environment shown in Fig. 4 (d), it is an environment adopted from (Sun et al., 

2022) with the designation as a test environment to measure the speed of convergence when the 

distance between the starting and goal points is stretched further with only 1 type of road available 

that can connect them. The starting and goal points are respectively at positions (5,5) and (145,75). 

In this test, all methods are tested to solve the path planning problem in the first maze 

environment. This test considers the working speed represented by the number of samplings 

needed to obtain the initial solution. In addition, the optimality of the path is also considered, 

represented by the lowest distance that can be generated at a given number of samples. Before 

testing on the maze environment shown in Fig. 4, the first test was conducted to show the 

difference in sampling methods when the initial path is found. This test involves informed-RRT*, 

RRT*-Smart, and the proposed method. These sampling techniques can be seen in Fig. 5. 
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(a) (b) 

 

(c) 

Fig. 5. Different Sampling Technique Conducted After Initial Path Found (a) Informed-RRT* 

(b) RRT* Smart (c) Proposed Method 

As shown in Fig. 5, informed-RRT* utilizes the prolate hyper-spheroid formed based on the initial 

path found and the distance between the starting and goal points. As seen in Fig. 5 (a), the initial 

path found greatly determines the size of the sampling distribution boundary ellipse. By only 

utilizing RRT* in sampling in the exploration process, a non-optimal initial path found will widen 

the sampling range, so that obtaining optimal paths takes a long time. Unlike informed-RRT*, 

sampling in RRT*-Smart focuses on nodes that are members of the solution path, see Fig. 5 (b). 

Thus, the non-optimal node relationship causes RRT*-Smart to require more time to improve the 

optimality of the final path. While in the proposed sampling method, these two problems can be 

solved, as shown in Fig. 5 (b). Although it has exactly the same characteristics as informed-RRT*, 

sampling in the optimization process is greatly assisted by an initial path that has better optimality 

compared to informed-RRT* and RRT*-smart. This is due to the exploration method that tends 

to be in line with the need to obtain optimality, by using fast-RRT*. Thus, optimization can be 

carried out optimally. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 6. Performance of Different Algorithm in Solving A Path Planning Problem in 

Environment 1 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e) 

Proposed Method 

Next, testing is carried out in the maze environment 1. In this test, the sampling allowed is 1500 

times. In the fast-sampling in Fast-RRT* and the proposed method is set with a radius value of 5 

distance units. To measure optimality, the path cost generated by each algorithm is observed. As 

seen in Fig. 6 (e), and Table 1, the path cost of the proposed method shows the best value, the 

lowest of the others. Although too far from informed-RRT* and RRT*-Smart, the cost value 

obtained is close to the results of Fast-RRT*, Fig. 6 (b). This shows that the path optimization 

after the initial path is found runs more optimally. So, it is clear, the role of Fast-Sampling in this 

case has a significant influence, namely in the form of work speed in finding the initial path, and 

leaving sufficient optimization work duration. Where this condition cannot be achieved well by 
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RRT*-Smart (in Fig. 6 (c)) and Informed-RRT* (in Fig. 6 (d)) which require identical time as 

RRT* (in Fig. 6 (a)) to find the initial path. 

Table 1 - Path Cost of Different Algorithm’s Solution in Environment 1 

Algorithm 
N-th Sampling Used to 

Obtain Initial Path 

Path Cost 

(Units of Length) 

RRT* 965 98.4145 

Fast-RRT* 206 89.6990 

Smart-RRT* 897 97.9063 

Informed-RRT* 786 96.4882 

Proposed Method 210 89.4719 

Next, testing is carried out on environment 2 with the number of samplings allowed is 6000 times. 

The setting on fast-sampling in fast-RRT* and the proposed method is 5 units of length, assuming 

the robot has a dimension of 1 unit, and with the closest distance to the obstacle is 1 unit as tested 

in all environments. The results of the second test can be seen in Fig. 7. 

   

(a) (b)  

     

(c) (d)  
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(e) 

Fig. 7. Performance of Different Algorithm in Solving A Path Planning Problem in 

Environment 2 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e) 

Proposed Method 

The results of the second test are shown in Fig. 7. As seen in Fig. 7 and Table 2, RRT*, Informed-

RRT*, and RRT*-Smart require around 4000 samplings, three times larger than Fast-RRT* and 

the proposed method. Thus, the remaining sampling amount that becomes the duration of path 

optimization in Informed-RRT* and RRT*-Smart becomes very short, which is around 2000 

repetitions on more complex problems and far from the starting and goal points. This has an 

impact on the high cost path, because optimization cannot run properly. On the other hand, with 

3 times faster initial path found, informed-RRT* and the proposed method have a better duration 

to perform optimization. However, optimization techniques that apply fusion, relying on other 

alternative paths, in narrow corridor areas are no longer ideal. This is due to the limited sampling 

in the arena to obtain other different paths that are very rare. This incident is a factor, even though 

it has enough time to perform optimization, fast-RRT* is not good enough compared to the 

proposed method. In contrast to the incident, by utilizing the ellipse that limits the sampling, the 

proposed method can maximize the optimality of the formed path even in a narrow corridor. This 

basis makes the optimality of the proposed method better than all the methods tested. To be able 

to pay more attention to this difference, Table 2 is presented.  

Table 2 - Path Cost of Different Algorithm’s Solution in Environment 2 

Algorithm 
N-th Sampling Used to 

Obtain Initial Path 

Path Cost 

(Units of Length) 

RRT* 3801 180.2745 

Fast-RRT* 2312 176.1436 

Smart-RRT* 3953 175.4582 

Informed-RRT* 3743 171.2413 

Proposed Method 1906 169.5376 

Next is the test on the 3rd maze environment with the characteristic of inconsistent width of the 

corridor that limits the starting with the goal point. In this test, the number of samples allowed is 

10000. Nothing has changed in the parameter settings for fast-sampling in Fast-RRT* and the 

proposed method. In this test, each for RRT*, Fast-RRT*, Smart-RRT*, informed RRT*, and the 

proposed method requires 7753, 5193, 7145, 7383, and 5041 repetitions to obtain the initial path, 

respectively (see Fig. 8 and Table 3). So, the optimization duration for RRT*, Smart-RRT*, 

informed-RRT* is around 2000s and for Fast-RRT* and the proposed method is 4000s.  
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(a) (b) 

  

 

(c) (d)   

 
(e) 

Fig. 8. Performance of Different Algorithm in Solving A Path Planning Problem in 

Environment 3 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e) 

Proposed Method 

As seen in Fig. 8 (a), 2000 random sampling repetitions relying on process rewiring, make RRT* 

able to produce a path with an optimality value of 179.3416. While Smart-RRT* actually 

produces a path cost value of 176.1705. Although slightly different, this incident shows that in 

limited sampling conditions, and the width of the space variant has an impact on the optimization 

process that cannot be maximized. While in a limited time of around 2000 repetitions, informed-

RRT* can do better optimization and produce a shorter cost path, which is 136.1736. Thus, in the 

3rd environment, optimization utilizing the bounding ellipse is more ideal than utilizing the 

sampling technique in the area around the beacon. In addition to strengthening the advantages of 

informed-RRT*, this incident also underlies that the proposed method with a wide duration has 
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the potential to provide optimal results. This statement can be emphasized by the results shown 

by the proposed method. With around 4000 samplings, the proposed method can optimize the 

optimization process using ellipse restrictions. Although this value is considered sufficient to 

perform the optimization process even with the fusion path technique, the results shown by the 

proposed method again explain that the optimization technique in the proposed method is indeed 

better and ideal. The node position of the initial path solution has the potential to be in wide and 

narrow areas, so the fusion process will have a good effect only in wide spaces, while in narrow 

areas it will be normal. This statement makes Fast-RRT* have a value that is still lacking 

compared to the proposed method and informed-RRT*, which is 138.3276. 

Table 3 - Path Cost of Different Algorithm’s Solution in Environment 3 

Algorithm 
N-th Sampling Used to 

Obtain Initial Path 

Path Cost 

(Units of Length) 

RRT*   7753 179.3416 

Fast-RRT* 5193 138.3276 

Smart-RRT* 7145 176.1705 

Informed-RRT* 7383 136.1736 

Proposed Method 5041 133.0854 

Furthermore, to re-test the consistency, the proposed method and other methods are compared 

again in solving the problem of environment 4. The sampling allowed for solving this problem is 

15,000 because the span of the starting and goal points tends to be further with the parameter 

settings than with the solution in environments 1, 2, and 3. In contrast to the previous 

environmental conditions, in environment 4 there is only 1 type of road that can connect the 

starting and goal points. 

  

(a) (b) 

  

(c) (d) 
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(e) 

Fig. 9. Performance of Different Algorithm in Solving A Path Planning Problem in 

Environment 4 (a) RRT*, (b) Fast-RRT*, (c) RRT*-Smart, (d) Informed-RRT*, and (e) 

Proposed Method 

Based on Fig. 9, it can be seen that fast-sampling in fast-RRT* and the proposed method can 

accelerate the initial path acquisition. Bias technique provides an influence to be able to reach 

unexplored areas while constraint sampling reduces complexity when expanding in areas with 

narrower widths. Based on this approach, fast-RRT* and the proposed method can find the initial 

path quickly with a sufficient level of optimality. In contrast to only utilizing random sampling 

and process rewiring. RRT*, Smart-RRT*, and informed-RRT* take longer and only leave a 

narrow search duration for the optimization process. Thus, it can be reaffirmed that providing 

acceleration in the initial path search process can increase the ideal level of optimization. As seen 

in Fig. 9 (a), Fig. 9 (c) and Fig. 9 (d) the cost path values obtained show the same results. So, it 

can be said that the short duration cannot be utilized by informed-RRT* and Smart-RRT* to 

perform optimization. This can be proven by comparing it with the cost path generated by fast-

RRT*, see Fig. 9 (b). With sufficient duration to perform optimization, Fig. 9 (b) explains that 

complex optimization techniques, such as path fusion, still provide potential for improvement. It 

is said to be complex because path fusion does not only depend on the previous path found, but 

also on the availability of different new paths. While the new path is unlikely to be obtained in 

cases where there is only one type of solution. For this reason, it can be stated again that the 

technique of utilizing the prolate hyper-spheroid and a centralized optimization strategy will be 

more effective and efficient when the possibility of a new path being generated is low. 

Furthermore, to support these statements, Table 4 is presented.  

Table 4 - Path Cost of Different Algorithm’s Solution in Environment 4 

Algorithm 
N-th Sampling Used to 

Obtain Initial Path 

Path Cost 

(Units of Length) 

RRT* 11029 307.7048 

Fast-RRT* 7157 302.6204 

Smart-RRT* 11029 307.7048 

Informed-RRT* 11029 307.7048 

Proposed Method 5039 291.619 

By observing Table 4, it is shown that with a duration of around 4000 is not enough to make 

optimization techniques on RRT*, smart-RRT*, and that informed-RRT* is enough to improve 

the path value of the formed path. In addition to being influenced by the range of the starting and 

goal points, this is also factored by the winding initial path that makes the ellipse wide and the 

centralized sampling has the same characteristics as RRT*. This also applies to smart-RRT*, the 

formed path stretches from the starting to the goal point winding with a large number of beacons. 

So that the optimization technique centered around the beacon cannot work well in a narrow time. 

Thus, in cases like this, the optimization time becomes a dominant factor in the aim of increasing 

the optimality of the formed path. Referring to the results in environments 1, 2, and 3, it can be 
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said that the proposed method can effectively solve problems both in terms of the speed of 

obtaining the initial path and the optimality of the resulting path. 
 

5. Conclusion  

The optimization process of informed-RRT* depends on when the initial path is found. 

Technically, informed-RRT* utilizes the way RRT* finds the initial path. Because of this method, 

the duration to get the path becomes long because there is no directional sampling in RRT*. In 

addition, the exploration that jumps and random makes this method inefficient in large-scale and 

complex environments. The path optimization provided by informed-RRT* is only achieved 

when the duration is sufficient. The long duration to find the initial path reduces the duration of 

path optimization in limited actions. For this reason, bias and constraint sampling are involved in 

this study to ensure that the exploration process does not repeat itself in areas that have been 

explored. Based on the results that have been presented previously, an average decrease in the 

path cost value of 3.94% is obtained, which is an increase in the optimality of informed-RRT* to 

the proposed method. This achievement is supported by the work of the proposed method which 

is faster with an average acceleration value of 47.90% compared to the base method, informed-

RRT. This shows that the proposed method has a better convergence rate and optimality than the 

previous method. 
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