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ABSTRACT

This study compares daylighting performance under four sky models of a classroom in tropical climates to
understand the differences in illuminance and uniformity values. This research is significant as it can
inform the relevance of the widely used static metric, such as the daylight factor, for daylight performance
evaluation in tropical climates in comparison with the climate-based sky model which is utilized for
dynamic metric calculation. Computational simulation was employed to achieve the objective.
Grasshopper-Rhinoceros was utilized for the classroom model, while Radiance was employed for sky
modelling and daylight simulation. The results indicated that static sky models exhibited greater
discrepancies in their average illuminance and uniformity values compared to climate-based or dynamic
sky models. The pervasive utilization of static metrics, such as the daylight factor, for evaluating daylighting
performance within a space may necessitate reconsideration in tropical climates, given the higher error
rates observed in this study for a classroom with bilateral opening design.
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1. Introduction

The role of daylight modeling in the evaluation of building performance is of significant,
as it informs decisions relating to daylight availability and visual comfort. Sky models are crucial
for forecasting the daylight availability within interior spaces, as they represent the light source.
The evolution of sky models has progressed from the initial development of simple mathematical
models, such as the uniform, Moon & Spencer, and Kittler models (Kittler, 1967; Moon &
Spencer, 1947; Yamauti, 1924), to more sophisticated ones, including the Tregenza and Perez
models (Perez et al., 1993; Tregenza & Waters, 1983). In the tropics, for instance in Indonesia,
the country standard (Badan Standardisasi Nasional (BSN), 2001) for daylight evaluation is still
utilizing static metric which is sky component under uniform sky model (Yamauti, 1924).

While the static metric offers a straightforward calculation approach, it is unable to account
for the microclimate variability present at diverse locations. This is due to the fact that the
calculation was based on a limited number of assumptions as a result of the technological
constraints associated with the initial discovery of the static sky models. For example, in
Indonesia, an initial study revealed significant discrepancies between the Commission
Internationale de I'Eclairage (CIE) overcast sky and the uniform sky (Hakim et al., 2021a), with
a maximum error of 163%. The uniform sky (Yamauti, 1924) was one sky model proposed long
before other models adopted by the CIE, such as the CIE standard overcast sky (Moon & Spencer,
1947) and the CIE standard clear sky (Kittler, 1967). Meanwhile, since the adoption of the Moon
and Spencer cloudy sky as the standard cloudy sky, the CIE has no longer included the uniform
sky as one of the standard sky models used for DF calculations.

Further study has indicated that utilization of the useful daylight illuminance (UDI)
metric, with an illuminance range of 250~750 lux, represents an effective and representative
dynamic metric in Indonesia (Atthaillah et al., 2022b, 2022a; Atthaillah et al., 2024a, 2024b). In
instances where the average UDI in this proposed range exceeds 80%, it can be assumed that all
other dynamic metric criteria are also met under the classroom with bilateral opening typology
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(Atthaillah et al., 2024a, 2024b). In addition, other studies employ a dynamic metric to assess
daylight availability inside a space (Bian et al., 2023; Korsavi et al., 2016; Moreno & Labarca,
2015; Samiou et al., 2022). The employment of the aforementioned dynamic metric suggests the
use of more complex sky models based on the climatic data of a location, such as the Perez (Perez
et al., 1993) and Tregenza sky models (Tregenza & Waters, 1983).

Despite the widespread use of various sky models, their accuracy in predicting illuminance
and uniformity, particularly those with bilateral openings such as the Indonesian school
classroom, remains insufficiently understood. This lack of clarity affects daylighting assessments
and can lead to suboptimal design choices in terms of daylight availability and visual comfort.
Therefore, this study proceeds to understand better this situation in the tropics (i.e., an Indonesian
location), where it might either be appropriate to employ the static metrics since the relatively
constant daylight availability throughout the year or vice versa.

The objective of this study is to comprehend the discrepancies and uncertainty in the mean
illuminance and uniformity values within the classroom and their associated error values. It is of
the utmost importance to comprehend the specific sky model utilization when evaluating the
daylight conditions within a given space, for instance a classroom, in the tropics, as this
understanding is fundamental to the formulation of design decisions (i.e., daylighting design).

2. Literature Review

The static metric, specifically the sky component (SC) and DF metrics, as outlined in the
Indonesian daylighting standard (Badan Standardisasi Nasional (BSN), 2001), was selected for
its straightforward calculation process (Atthaillah et al., 2022a; Atthaillah et al., 2024a). The
difference between SC and DF metrics is that SC does not include the reflectance of the interior
and exterior surfaces, nor the transmittance of the glass. The calculation is based only on the
effective opening contribution to daylighting, while the DF calculation includes the surface
reflectance (both interior and exterior surfaces) and the glass transmittance (Mardaljevic, 2021).
The similarity of the metrics is that they often used a simpler sky model such as uniform and CIE
standard overcast sky models.

However, since the adoption of the CIE standard overcast sky model, the CIE has excluded
the uniform sky model from the metric calculation because it is an oversimplification of the real
condition based on only one sky luminance value (Mangkuto, 2016; Reinhart, 2011). The CIE
standard overcast sky (Moon & Spencer, 1947) models, the presence of the sun is not considered
or only the sky glow is considered. In its development, a clear sky model was proposed in 1967
(Kittler, 1967). In this sky model, the presence of the sun is considered, however, without
variations in climatic conditions such as the presence of clouds or rainy conditions. Therefore,
this sky model is not sensitive to certain climatic conditions.

Since the development of computational tools, sky models have evolved from a simple
mathematical model to a more complex sky model that represents the climatic conditions of a
specific location, known as the Perez sky model (Perez et al., 1993). The sky model was
developed through the integration of weather data into a continuous sky dome. This model is
capable of calculating illuminance and luminance values with a high degree of accuracy for a
specific location at a given hour of the day, based on the input of specific weather data. However,
for annual daylight calculation, this sky model is not efficient as it requires expensive computation
time. Therefore, it is not practical for annual daylight simulation.

To address the aforementioned issue, it was imperative to develop an alternative sky model
that could accurately simulate annual daylight conditions with greater efficiency. Therefore, it
was proposed an alternative sky model based on the Tregenza sky model. This sky model was
based on the Tregenza sky subdivision which consisted of 145 disk segmentation in the sky dome,
it was known as daylight coefficient model (Tregenza & Waters, 1983). Subsequently, it was
proposed that the sky dome be divided into rectangular segments to address the issue of the empty
space resulting from the disk construction. However, the decision was taken to retain the original
design with 145 sky segmentations. This is referred to as the Tregenza sky model which is known
to have multiplication factor (MF) = 1 for the sky subdivision (Reinhart & Walkenhorst, 2001).
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This sky model is utilized for the annual daylight simulation due to its better time efficiency in
comparison to the original Perez sky model.

With the ability to simulate annual daylight, consequently, some daylight dynamic metrics
were proposed for daylight evaluation in a space. The concept of daylight autonomy (DA) was
among the first metrics to be proposed for the evaluation of daylight, taking into account the
impact of climate variability throughout the year (Reinhart & Walkenhorst, 2001). DA defines a
single threshold for the evaluation of daylight, namely that if the daylight availability in a sensor
is equal to or above 300 lux, then it is considered sufficient. Given that the deficiency of daylight
due to excessive sunlight could not be justified, the concept of useful daylight illuminance (UDI)
was proposed (Nabil & Mardaljevic, 2005). The sufficient threshold for the UDI metric was
revised to a range of 100 lux to 3000 lux over the course of a year (Mardaljevic, 2010). UDI
defines the lower and upper threshold for a sensor in a working plane within a given space, thereby
enabling the insufficiency of daylight to be justified, whether due to a lack or excessive daylight,
in addition to the sufficient condition. The aforementioned total availability metrics indicated that
the extent to which sunlight contributed to a sensor's measurements within a given space remained
inconceivable.

In 2012, the llluminating Engineering Society of North America (IESNA) proposed an
annual sunlight metric called Annual Sunlight Exposure (ASE) (IESNA, 2012). The DA concept
has been further developed for the evaluation of spatial conditions, the so-called spatial daylight
autonomy (sDA). The sDA and ASE later adopted as a standard annual daylight measurement
metric in America (United States Green Building Council (USGBC), 2013, 2021). As previously
discussed, the yearly daylight metrics employed temporal data for calculations. The temporal data
depended on the evaluation hours selected on a yearly basis, with each evaluation hour at each
sensor having a specific illuminance value throughout the year by default under Tregenza sky
model.

Notwithstanding the aforementioned developments, certain studies continue to assess
daylight under both static sky models, such as the CIE clear sky and CIE standard overcast sky
models, and dynamic sky models, including the Perez and Tregenza sky models. A study was
conducted to evaluate the design of a courtyard under CIE standard overcast sky conditions
(Acosta et al., 2014). A square courtyard with varying heights was evaluated with height-to-width
ratios between 1/3 and 5/1. Additionally, the courtyard reflectance was set at 0.3, 0.5, and 0.7.
The Tregenza algorithm was employed for SC calculation. Interior reflection was calculated by
subtracting the SC from the DF. The research asserted that the results of their method were
accurate for DF calculation under CIE standard cloudy conditions. Similarly, a study investigating
top lighting utilizing DF metric was conducted in the school setting in Slovakia (Dolnikova et al.,
2020). Moreover, SC was employed for the assessment of the accuracy of simulation tools. The
SC metric indicated the utilization of the static sky model (Acosta et al., 2015).

Furthermore, the accuracy of the existing static model was evaluated in regard to luminance
spectral sky models. It was found that the CIE standard overcast sky model exhibited the best
performance (Diakite-Kortlever & Knoop, 2021). Additionally, a novel methodology was put
forth with the objective of enhancing the precision of the CIE standard sky models for a specific
climate of Saudi Arabia. The Tregenza method of generating sky luminance was deemed to be
overly intricate for the purpose of analysis (Alshaibani & Li, 2021). Another study sought to
identify pertinent CIE standard sky models in relation to the climatic conditions in Harbin, China
(Sun et al., 2021). The findings revealed that the CIE standard clear sky model was the most
prevalent within the Harbin climate. A comparable endeavor to enhance the CIE standard clear
sky model has been undertaken in Morocco (Mendyl et al., 2023) and Spain (Dieste-Velasco et
al., 2024).

In a broader context, static sky models were also evaluated in an agricultural setting for the
purpose of modeling photosynthetic active radiation (PAR) (Garcia-Rodriguez et al., 2021). In a
building context, an office with unilateral opening was evaluated for various daylight metrics
under CIE standard overcast sky condition for various facade thickness (Mangkuto et al., 2021).
The variation in fagade thickness had a significant impact on the observed daylight metrics, with
sDA exhibiting the least influence. These results demonstrated insensitivity of sDA to daylight
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condition for the specific case observed under the adapted CIE standard overcast sky model,
which was representative of the typical outdoor conditions in tropical climate regions.

Furthermore, recent years have seen efforts made to evaluate the annual daylight conditions
within a given space. The annual daylight has been indicated through the utilization of Perez and
Tregenza sky models. Some studies have considered the one-sided opening typology for
daylighting evaluation, including analyses of office and school settings (Bahdad et al., 2021;
Bakmohammadi & Noorzai, 2020; Brembilla & Mardaljevic, 2019). Also, top-lighting strategies
were implemented in accordance with the dynamic sky condition (Fan et al., 2021; Lou et al.,
2021; Salma et al., 2023). Next, several studies assessed the two-sided opening typology for its
impact on annual daylight performance. In tropical climates, where classrooms are often situated,
the two-sided opening typology proved advantageous (Atthaillah et al., 2022b, 2022a; Atthaillah
et al., 2024a; Effendy et al., 2023; Hakim et al., 2021b).

From previous discussions, the choice of static sky models, including the CIE standard
models, remains a topic of ongoing research. This is largely attributable to the straightforwardness
of these models, which facilitate the calculation of the relevant metrics. Concurrently, the debate
has also given rise to the proposition of utilizing annual daylighting evaluation, which indicates
the deployment of a more dynamic sky model, such as the Perez and Tregenza sky model.
However, to what degree the discrepancy occurs in the daylight availability inside a space due to
the change from static and dynamic sky is remain unclear particularly in the tropics. The tropical
climate provides a distinctive opportunity to employ a two-sided opening typology, which is
advantageous for cross-ventilation. With regard to daylighting, the bilateral opening typology is
also distinctive due to the superimposition of light within a space. A space that utilizes the bilateral
opening typology in a tropical setting is a classroom. In Indonesia, classrooms are a common
feature throughout the country and are typically large in size. Thus, this study attempts to
investigate the discrepancy and uncertainty of daylight availability under both static and dynamic
sky models in a classroom setting in the tropics.

3. Research Methods

This study employed a computational method for the simulation purpose, utilizing the
Radiance (RAD) (G. Ward & Rubinstein, 1988). The RAD is a validated simulation engine for
short-term (Atthaillah et al., 2022b; Atthaillah et al., 2024a; Khidmat et al., 2022), long-term
daylight simulation (Brembilla & Mardaljevic, 2019; Geisler-Moroder et al., 2017; Kharvari,
2020; Mardaljevic, 1995; McNeil & Lee, 2012; G. J. Ward et al., 2021). Moreover, approximately
52% of the daylight simulation employed RAD-based tools (Ayoub, 2019). Previously, Daysim
was the sole daylight simulation engine capable of conducting annual daylight simulations. For
annual simulations, Daysim considered 65 points for the sun representation, which proved
problematic for accurately simulating the direct sunlight contribution inside a space (Reinhart &
Walkenhorst, 2001; Subramaniam & Mistrick, 2017). Recently, RAD has been enhanced with the
ability to represent the sun's position in the sky dome with greater precision through a more
refined sky discretization (Subramaniam, 2017). Moreover, a RAD-based daylight simulation
software has been developed to incorporate the actual sun position in the analemma (Roudsari &
Pak, 2013; Subramaniam & Mistrick, 2017). It is therefore recommended that RAD be utilized in
order to achieve the objectives of this research.

A classroom with bilateral opening typology (Fig. 1) was investigated under four different
sky models, namely Tregenza (annual sky), Perez (continuous dynamic sky), Kittler (CIE
standard clear sky with sun), and Moon & Spencer (CIE standard overcast sky) (Kittler, 1967;
Moon & Spencer, 1947; Perez et al., 1993; Tregenza & Waters, 1983). The sky models were
selected because they were the most relevance sky models utilized for daylight performance
simulation. For instance, DF calculation for under Moon and Spencer sky model for school
classroom daylight performance (Dolnikova et al., 2020), DF under clear sky condition or Kittler
sky model (Ahmad et al., 2022; Nasrollahi & Shokry, 2020) and some other various studies for
annual daylight performance which indicated the utilization of the dynamic sky models such as
Perez (Subramaniam & Mistrick, 2017) and Tregenza sky models (Atthaillah et al., 2024a;
Bahdad et al., 2020; Bian et al., 2023; Samiou et al., 2022). The bilateral openings are oriented
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east and west. This orientation was selected based on the current findings that east and west-facing
openings can serve as a reference orientation for evaluating daylight availability within a space
in the tropics (Atthaillah et al., 2024a, 2024b). Next, the classroom dimensions were 7 m x 8 m x
3.5 m, as suggested the ministry of education (Kementerian Pendidikan Nasional RI, 2011), with
a 30% window-to-wall ratio (WWR) as previously suggested for tropical climate classroom
(Abdelhakim, M., Lim, Y. W., & Kandar, 2019). Furthermore, the window was elevated at 1.5 m
above the floor level. The window height and their distances (center-to-center) were 1.2 m and
1.5 m, respectively. Additionally, 100 sensor points were equally distributed in the classroom,
elevated at 0.75 m above the floor level. The classroom was modelled using Grasshopper (GH)
algorithms within the Rhinoceros (RH) interface (Robert McNeel & Associates, 2019).
Subsequently, the geometry was converted into a RAD scene utilizing the oconv program of RAD
for further daylight evaluation. Subsequently, the classroom model was assigned to the RAD
material, as detailed in Table 1.

This study employed the Perez sky model as a reference point to facilitate comparison of
illuminance values with those derived from alternative models. The Perez sky model is considered
the most validated sky model (Mardaljevic, 2000; Perez et al., 1993) for performing dynamic
daylight analyses for a specific location worldwide. However, for annual daylight evaluations,
this model is not considered the most efficient due to the longer simulation times involved. For
annual daylight simulations, the Tregenza sky model is utilized (Tregenza & Waters, 1983).

Fig. 1. Digital model of the classroom. Window facades face east and west

Table 1 - The classroom RAD material setting.

Radiance Material Value
Wall reflectance (pw) [-] 0.5
Floor reflectance (pr) [] 0.2
Ceiling reflectance (pc) [-] 0.8
Ground reflectance (pg) [-] 0.2
Shading reflectance (psha) [-] 0.3
Glass transmittance (z) [-] 0.7

The sky model was created utilizing the gensky program for the Kittler and Moon &
Spencer sky models. The Perez sky model was generated with the gendaylit program. Lastly, the
Tregenza sky model was created utilizing gendaymtx of Radiance. Both the Perez and Tregenza
sky models received location input from a .wea file for the location of Lhokseumawe, Indonesia
(5°10°0" N, 97°8°0" E, 2~24 m above sea level). The selected location is deemed appropriate for
use as a reference point for daylight evaluation in Indonesia, based on the findings of the previous
study (Atthaillah et al., 2024b). The .wea file was generated through the utilization of the
epw2wea program, which accepts an input from the .epw file as its input. The illustration of the
sky models is presented in Fig. 2a-d. The daylight was evaluated based on indoor illuminance

26



Atthaillah et al ... Vol 7(1) 2025: 22-36

values at critical times of the year (equinox and solstice), specifically from 08:00-17:00. These
critical days were March 21%, June 22", September 20", and December 22", thus, this resulted
in 40 evaluation hours.

(a) (b) (c) (d
Fig. 2. Sample of sky models generated with RAD for daylight investigation in this study (a) Tregenza,
(b) Perez, (c) Kittler and (d) Moon & Spencer.

For the daylight simulation inside the classroom, the rtrace program was employed to
calculate the illuminance under the Perez, Kittler, and Moon & Spencer sky models. In contrast,
the rfluxmtx program was utilized for the Tregenza sky model. This program established a
communication channel with rcontrib in the process of carrying out the daylight calculation under
the Tregenza sky. All the results were converted into illuminance values (lux) for 40 evaluation
hours. The setting for each simulation program is shown in Table 2.

Table 2 - RAD setting for daylight simulation.

Radiance Program Parameter

rtrace -aa 0.1 -ab 6 -ad 4096 -ar 128 -as 4096 -dc 0.75
-dj 1.0 -dp 512 -ds 0.05 -dr 3 -dt 0.15

rcontrib -aa 0.1 -ab 6 -ad 25000 -ar 128 -as 4096 -dc

0.75 -dj 1.0 -dp 512 -ds 0.05 -dr 3 -dt 0.15 -I -Ir
8 -lw 4e-07 -c 1 -ss 1.0 -st 0.15

4. Data Analysis

Firstly, in order to understand the daylight distribution inside the space, uniformity (U)
metrics are utilized. In this study, two uniformity metrics are employed as shown in equations (1)
and (2).

U, = Emin )
Emax

U, = M 2
Emean

where Emin, Emax and Emean are minimum, maximum, and mean illuminance values respectively.
The illuminance data were obtained from the RAD simulation for four sky models.

Secondly, relative error is observed for the comparison between the illuminance (E) and
uniformity (U) values from the Perez sky (reference sky model) with the rest of alternative sky
models. The errors are defined as in equations (3) and (4).

£p = Eref sky — Ealternative sky x 100% (3)
Eref sky

gy = Uref sky — Ualternative sky x 100% (4)
U ref sky

where ee and eu are relative error for illuminance and uniformity values respectively. Uressky and
Uartemative sky are uniformity values for reference and alternative sky models respectively. In
accordance with the previously proposed 10% error tolerance threshold (Mardaljevic, 2000;
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Subramaniam & Mistrick, 2017), this study proceed on the assumption that any error within this
range will be considered acceptable.

Next, an uncertainty analysis was conducted for both illuminance (E) and uniformity (U),
with the coefficient of variance (CV) values observed. The CV value is defined as a comparison
of the standard deviation () with the mean value and can be mathematically defined as in equation
(5).

Of OF g,
CV = v

®)
Emean or Umean

Finally, Pearson correlation analysis and scatterplot were employed to evaluate the
relationship between the reference and the alternative sky models. This is important to observe
the correlation between the illuminance value for each sky model and the classroom. This
information is crucial to understand the interpolation value between each sky model for validation
purposes.

5. Results

The mean illuminance value derived from a variety of sky models for critical days of the
year is presented in Fig. 3. It can be observed that the Perez and Tregenza skies have an almost
comparable illuminance value throughout the critical day of the year. Both sky models indicated
a different pattern of average illuminance (aE) across 40 evaluation hours. Furthermore, aE values
under Kittler and Moon & Spencer sky models demonstrated a relatively predictable pattern.
However, the Kittler sky model exhibited a more diverse range of aE values in comparison to the
Moon & Spencer model. Only the Moon & Spencer model demonstrated a consistent pattern
across all months. Furthermore, the almost comparable pattern of Perez, Tregenza and Kittler
occurred in September.

Nevertheless, the average illuminance value exhibited a relatively greater discrepancy
between Perez or Tregenza and the Kittler sky model. This phenomenon is presented in Table 3,
where the discrepancy between the median (Perez = 4057.40 lux, Kittler = 5989.98 lux) and mean
values (Perez = 4691.19 lux, Kittler = 5363.66 lux) was more pronounced when comparing Perez
and Kittler sky models. Furthermore, the Moon & Spencer model exhibited an exceptionally low
illuminance value (underestimate the illuminance values) in comparison to the other sky models.
However, all the sky models indicated a higher degree of uncertainty over time (CV > 0.1) in
terms of their illuminance values, with the lowest occurring under the Moon and Spencer sky
model (CV = 0.3, Table 3).

10,000
8,000 A
6,000 A o \

4,000 |

March June {1 September % December

|}

2,000

L e s o e S A s B e e

Average Illuminance (aE) [Lux]

—u— Tregenza Sky Perez Sky Kittler Sky ~ ——Moon & Spencer Sky

Fig. 3. Average illuminance results under various sky models across the critical day of the year.

Table 3 - Average illuminance statistics for various sky models.

Sky Model Min. Max. Median ¢ Mean Ccv
Perez 1448.14 9647.51 4057.40 2235.12 4691.19 0.48
Tregenza 1409.94 9543.16 4211.30 2168.52 4738.50 0.46
Kittler 1187.27 9614.03 5989.98 2796.59 5363.66 0.52

Moon & Spencer 498.44 1407.30 1118.98 308.25  1040.70 0.30
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In terms of Ui and Uz, all other sky models (Table 4), except the Moon & Spencer,
suggested the lowest uncertainty (CV = 0.01). This indicated that the Moon & Spencer sky model
suggested higher uniformity inside the classroom. Meanwhile, Perez and Tregenza sky models
showed similar CV values for both uniformity metrics (U: = 0.54 and Uz = 0.25). A CV value
greater than 0.1 indicated a lack of uniformity within the classroom. Furthermore, the Kittler sky
model exhibited the highest CV value among the remaining sky models, with values of 1.13 for
U and 0.61 for Us.

Table 4 - Uniformity statistics for various sky models.

Sky Model Min. Max. Median o Mean CcVv
Us

Perez 0.07 0.51 0.26 0.15 0.27 0.54

Tregenza 0.07 0.50 0.24 0.15 0.28 0.54

Kittler 0.04 0.66 0.08 0.24 0.22 1.13

Moon & Spencer 0.47 0.49 0.48 0.01 0.48 0.01
Uz

Perez 0.28 0.74 0.50 0.13 0.52 0.25

Tregenza 0.29 0.72 0.51 0.13 0.53 0.25

Kittler 0.20 0.81 0.27 0.24 0.40 0.61

Moon & Spencer 0.65 0.68 0.66 0.01 0.66 0.01

Table 5 presents the ¢ statistics data for the illuminance values between the Perez sky
model and the remaining sky models. The lowest mean & was identified under the Tregenza sky
model (mean € = 6.44%). The remaining sky models exhibited the increase of the mean ¢
values. Similarly, lowest mean € values for U1 (mean € = 8.15%) and U2 (mean & = 3.78%) were
discovered under Tregenza sky model. The rest of the sky models shows U > 50% and Uz >
35%. Table 6 presents the complete ¢ statistics for uniformity values.

Table 5 - Average illuminance statistics for various sky models.

Metrics Tregenza  Kittler Moon & Spencer
Min. [%] 0.29 0.92 38.09
Max. [%] 19.51 299.59  94.28
Median [%] 4.55 47.60 75.23
Standard Deviation (o) 5.52 80.39 14.95
Mean ¢ [%] 6.44 70.84 72.24

Table 6 - Relative error (¢) statistics for uniformity values. The comparison of Perez with Tregenza,
Kittler and Moon & Spencer sky models.

Metrics Tregenza Kittler Moon & Spencer
Uz U, Uz Uz U; U2
Min. [%] 0.22 0.09 28.11 5.25 0.28 0.27
Max. [%] 17.75 11.12 90.97 68.14 603.67 143.29
Median [%] 9.06 3.34 54.89 36.91 89.02 31.73
Standard Deviation (o) [-] 4.99 2.63 16.43 16.82 178.16 38.20
Mean ¢ [%] 8.15 3.78 56.36 36.81 159.61 37.02
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Fig. 4. Correlation matrix between evaluated sky models

Fig. 4 illustrates the correlation matrix between the evaluated sky models. The strongest
positive correlation is observed between the Perez and Tregenza skies (r = +0.99). Additionally,
a moderate positive correlation was identified between Perez and Kittler (r = +0.59) and
between Tregenza and Kittler (r = +0.54). In contrast, a moderate negative correlation was
observed between the Kittler and Moon & Spencer sky models, yielding a correlation
coefficient of r = —0.51. Finally, the Perez and Tregenza sky models demonstrated a weak
correlation with the Moon & Spencer sky model, with r = +0.05 and r = +0.11, respectively.
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Fig. 5. Scatter plot between Perez sky model compared to (a) Tregenza, (b) Kittler and (c) Moon &
Spencer sky models

The scatterplot (Fig. 5a) demonstrated that the Perez and Tregenza sky exhibited the
strongest relationship in terms of aE (R? = 0.97). In contrast, the Kittler model exhibited a
relatively weak relationship with the Perez sky (R? = 0.31, Fig. 5b). Finally, the Moon &
Spencer model demonstrated a negligible relationship with the Perez sky model (R? = 0.01, Fig.
5¢).
6. Discussion

This study has compared the daylight availability of a bilateral opening classroom typology
under four different sky models, namely Perez, Tregenza, Kittler (CIE standard clear sky) and
Moon & Spencer (CIE standard overcast sky). The average illuminance value is sensitive to the
change of the sky models due to high uncertainty (high CV values). Furthermore, with regard to
uniformity values, the Perez and Tregenza models suggest similar levels of uncertainty, whereas
the Kittler model yields the highest uncertainty. Conversely, the Moon & Spencer model indicates
the lowest uncertainty, suggesting that there is insignificant variation in illuminance values within
the classroom with a bilateral opening typology.

In terms of the relative error, the highest error was found in the comparison between the
Perez and Moon & Spencer sky models, both for their mean illuminance and uniformity values.
Conversely, the lowest and highest relative error was discovered between the Perez compared to
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Tregenza and the Perez compared to Kittler models, respectively. Consequently, the Perez model
has the highest correlation to the Tregenza model as demonstrated in Figs. 4 and 5a.

Furthermore, the implication of these findings is that the illuminance values under Moon
& Spencer sky model exhibits low values compared to other sky models. This type of sky model
is generally utilized for daylight factor (DF) calculation as on the static metric for daylight
performance and is still widely used worldwide (Abdelhakim, M., Lim, Y. W., & Kandar, 2019;
Callejas et al., 2020; Dolnikova et al., 2020; Nasrollahi & Shokry, 2020; Pellegrino et al., 2015;
Syahreza et al., 2018). This might lead to incorrect decision for daylight availability justification
within the space, particularly in the context demonstrated in this study.

In addition, the high level of uniformity in the classroom under the Moon & Spencer sky
model, as opposed to other sky models, could also lead to an inaccurate assessment of visual
comfort due to underestimate values, such as potential for glare in a space, particularly in this
study for the tropical climate in the classroom with the bilateral opening typology. Therefore,
building designer must understand the implication of utilizing specific daylight metric for a
daylight performance inside a space. Efforts such as adapting the static sky models to the local
climate, to calculate the DF, as previously conducted in China (Aghimien & Li, 2022; Sun et al.,
2021), could be a wise approach to adapt in the tropical climate in order to reduce the discrepancy.

The static daylight metrics employ a more generalized sky model, such as the Kittler and
Moon & Spencer sky models, while the dynamic daylight metrics evaluate daylight based on sky
models, such as the Perez and Tregenza. This study demonstrates that the Perez and Tregenza sky
models are highly correlated, suggesting that the Tregenza sky model could serve as a
representative sky model for annual daylighting performance evaluation, and it is relevant to the
previous finding (Reinhart & Walkenhorst, 2001). However, for the annual contribution of direct
sunlight into a room, a simulation can be performed under a modified Tregenza sky model, as
previously proposed (Subramaniam & Mistrick, 2017). Furthermore, this study demonstrates that
for tropical climates, the choice between static and dynamic metrics can have a significant impact
on the design decision for daylighting performance within a space.

This finding suggests that in tropical climates with year-round daylight exposure, the
bilateral opening classroom design utilizing static metrics, which has a direct relationship to, for
instance, the Moon & Spencer sky, may lead to different design decisions when compared to the
dynamic daylight evaluation, which is associated with the Perez and Tregenza sky in terms of
illuminance values and uniformity conditions inside the space. Previous studies have suggested
the potential benefits of employing a dynamic metric in the context of a bilateral opening typology
classroom in tropical climates (Atthaillah et al., 2022a; Atthaillah et al., 2024a, 2024b). The
recommendations set forth in previous studies are intended to facilitate a more accurate
assessment of daylight availability and visual comfort within a classroom setting in the tropics.
Alternatively, a more straightforward annual daylight metric calculation has been previously
proposed with the objective of enabling the building designer to make an early prediction of
annual daylight availability for a classroom in the tropics (Atthaillah et al., 2024b). The prediction
model is based on the illuminance value under the Tregenza sky model.

Consequently, architects and building designers must be aware of this phenomenon,
particularly when the objective is to design high-performance buildings. Nevertheless, the present
study is constrained to a period of 40 critical hours of the year, which represents a relatively
limited sample size. The findings of this study may facilitate the earlier identification of the
optimal sky model for daylight simulation in tropical climates, thereby enhancing our
comprehension of the discrepancies that may arise from the selection of different sky models in
the tropics. A full-year evaluation may also be required in order to gain a more comprehensive
understanding of the situation.

7. Conclusion

This study compares daylight availability in a bilateral opening classroom with different
sky models, including the Perez, Tregenza, Kittler, and Moon & Spencer skies. The Perez and
Tregenza models are comparable, and both skies exhibit similar levels of uncertainty. The Kittler
model exhibits the highest uncertainty for its mean illuminance and uniformity values. The Moon
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& Spencer model indicates the lowest uncertainty, suggesting insignificant variation in its
uniformity values.

The relatively higher differences, both for average illuminance and uniformity values,
between the Perez and Tregenza models and the rest of the sky models suggest that the static sky
models are not comparable for daylight prediction in the tropics. Furthermore, the utilization of
the static metric, despite its continued use by many scholars, in the tropics may result in incorrect
design solutions for daylighting design. Consequently, it is imperative that building designers are
aware of this situation to provide appropriate design solutions, particularly in the context of
tropical classroom design.

Finally, while the static metric is employed on a continuous basis due to its simplicity in
calculation, approaches such as adapting the static sky model to local climate, as demonstrated in
studies conducted in China, could prove beneficial in improving the accuracy of daylight
availability calculations. However, additional research is necessary to ascertain the suitability of
this approach in tropical climates.
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