
 Management Studies and Entrepreneurship Journal
 Vol 5(2) 2024 : 8728-8737

Copyright © 2024 THE AUTHOR(S). This article is distributed under a Creative Commons Attribution-NonCommercial 4.0
International license, http://journal.yrpipku.com/index.php/msej

Quantifying Risk In Waterfall Methodology: Case Study At Aplikasi Super

Mengukur Risiko Dalam Metodologi Waterfall: Studi Kasus Di Aplikasi Super

Indriati Njoto Bisono1, Vincent Arvin2, Hanijanto Soewandi3

Teknik Industri, Fakultas Teknologi Industri, Universitas Kristen Petra, Surabaya1
Aplikasi Super, Nusantara Technology, Surabaya2
MicroStrategy, Tysons Corner, VA, USA3

mlindri@ petra.ac.id1, vincent.arvin@nusantara.technology2, hsoewandi@microstrategy.com3

*Corresponding Author

ABSTRACT
In this paper, we presented a very simple mathematical model based on Dynamic Programming to answer
one of the biggest concern in Waterfall methodology, namely: quantifying risk. Our approach essentially
resembles Elmaghraby (2005), but we have more stages and use uniform distributions. With this approach,
we can show and quantify the risk in Waterfall methodology so that decision maker can understand the
implication of his decision. Dynamic Programming solution also provides a blue print for adjusting decision
if the early (previous) stage does not go as planned. A case study at Aplikasi Super with some sensitivity
analysis is provided as a numerical illustration.
Keywords: Waterfall Methodology, Risk Management, Sequential Decision Process, Dynamic
Programming

ABSTRAK
Dalam artikel ini, kami menyajikan model matematis yang sederhana berdasarkan Dynamic Programming
untuk menjawab salah satu kekhawatiran terbesar dalam metodologi Waterfall, yaitu: mengukur risiko.
Pendekatan kami pada dasarnya mirip dengan Elmaghraby (2005), tetapi dengan lebih banyak tahapan
dan menggunakan distribusi uniform. Dengan pendekatan ini, kami dapat menunjukkan dan mengukur
risiko dalam metodologi Waterfall sehingga pengambil keputusan dapat memahami implikasi dari
keputusan mereka. Solusi Dynamic Programming juga menyediakan cetak biru untuk menyesuaikan
keputusan jika tahap awal (sebelumnya) tidak berjalan sesuai rencana. Studi kasus di Aplikasi Super
dengan beberapa analisis sensitivitas disertakan sebagai ilustrasi numerik.
Kata Kunci: Metodologi Waterfall, Manajemen Risiko, Proses Keputusan Berurutan, Pemrograman
Dinamis

1. Introduction

Aplikasi Super, part of PT Krakatau Karya Abadi, is an application-based startup business
that primarily provides a wide basic-need chain to provide equal distribution for the second and
third-tier cities in Indonesia. As the first social commerce platform in Indonesia that is ISO
9001:2015 certified, Aplikasi Super aims to solve economic inequality across cities for
Indonesia’s future economy. Aplikasi Super is also the first consumer technology company in
Indonesia backed by Y-Combinator, which oversees the main feature, SuperAgen, which is
agent-led commerce that enables community leaders to become retailers within the
communities. One of us was lucky enough to be given a handful of work as an Associate Product
Manager in the Product and Technology Department. The department is responsible for
planning, conceptualizing, and executing requests from other departments, including designing
the logical framework to satisfy the requests from the corresponding departments as well as
getting approval from the other related departments and stakeholders.

Generally speaking, software developments will always exist, especially in technology
companies such as: Aplikasi Super. There will always be a need for improvised applications and
web dashboards at all times. At Aplikasi Super, the web dashboard needs to be improved as the

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8729

business grows. There are several problems which might need a web dashboard improvement
and feature creations. For example: an inefficient delivery system, complicated manual product
bundle creation, and the need to have a discount feature. With an improved dashboard, those
inefficiencies might be overcome, or at least mitigated. In terms of incompleteness, there are
always some features that the users need, but are not available yet. Furthermore, there are
some procedures that still need to be done manually. These problems lead to the usage of a
dashboard and its features as the main platform for Aplikasi Super to execute its business
processes.

In improving the dashboard to support better business processes, the requests are given
by other departments. Hence, those requests generally came from the head of other
departments (on business side) – where requests are mainly from each individual’s ideas and
thoughts. Even though, detailed data regarding the reason for requests were not available, the
requests are usually well understood (or can be easily verified). Furthermore, given that other
departments are also very busy, enough freedom & trust is given to develop the improvement.
Given all the above constraints and flexibility given, Waterfall methodology in project
management seems to be a more appropriate approach. Hence, the choice.

Our biggest problem is how to manage the risk associated with this Waterfall
methodology (see Literature Review for detail). When we ask our individual team member about
estimate of a task 𝑖, the typical answer that we got is: “I can finish it between 𝑙𝑏$,& and 𝑢𝑏$,&
days.” Furthermore, when we ask how about if they (𝑞 people) work together for activity 𝑖, we
got the answer such as: “Oh, we can then finish it between 𝑙𝑏$,) and 𝑢𝑏$,) days.” The interesting
aspect is: we find out that 𝑙𝑏$,) ≠

+,-,.
/-

 and 𝑢𝑏$,) ≠
0,-,.
/-

. But, rather 𝑙𝑏$,) =
2-×+,-,.

/-
 and 𝑢𝑏$,) =

2-×0,-,.
/-

 with 𝑘$ > 1. We will have more discussion about this in the mathematical modeling

section.
In this paper, we demonstrate a very simple yet realistic mathematical & computational

model using Dynamic Programming (DP) as an answer to the problem, and we explain how
Waterfall methodology with proper risk management is used at Aplikasi Super to create
additional functionalities (enhance) in its web dashboard as a platform to execute most business
processes.

2. Literature Review

In many books, the typical diagram of the Waterfall model was attributed to Royce
(1970). But, many years before, Torres & Benington (1956) gave a presentation at the
Symposium on Advanced Programming Methods for Digital Computers with a similar top-down
concept. It should be noted that all authors, q failure” while Torres & Bennington pointed out
that the process was not in fact performed in a strict top-down fashion, but depended on a
prototype. Bell & Thayer (1976) is perhaps the first that refer the qq as “waterfall”. The general
picture of Waterfall methodology is given in Figure 1.

Figure 1. Waterfall Methodology

Eventhough, Waterfall methodology had been around for a while, surprisingly very little
literature were found on the project planning aspect of it. Most literature review that we can
find usually contrast between Waterfall vs. Agile methodology, e.g., van Casteren (2017),
Thesing et.al. (2021), & Chandran & Das Aundhe (2022). No one seems to response to the flaws
that even Royce as well as Torres & Bennington had raised earlier, i.e., how to measure and
mitigate the risk associated with testing at the very last stage.

 Requirements Design Implementation Integration &
Testing Operation &

Maintenance

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8730

Very likely, these are caused by the fact that the project planning for Waterfall
methodology seems to be very straightforward with a single path with 𝑚 activities (in Figure 1,
clearly 𝑚 = 4 (we assume Operation & Maintenance is a whole new project within software
development life cycle).

In the context of Project Management, Elmaghraby (2005) was among the first who gave
a warning about the fallacy of average when it comes to project risk management. Our work is
heavily influenced by his. But, given that we don’t know the distribution of each activity, and we
are just told about lower bound 𝑙𝑏$ and upper bound 𝑢𝑏$ for activity 𝑖, we will assume a uniform
random variable rather than exponential random variable as in Elmaghraby (2005). This is one
of the main difference between his & ours. We will not review Dynamic Programming since this
method has been widely covered in many introductions to Operations Research books, e.g.,
Hillier & Lieberman (2021). However, it is important to point out that clever implementation of
DP such as in Knapsack problem and/or Wagner-Whitin algorithm for Economic Lot Scheduling
Problem iterates on the knapsack capacity (or time). We follow the Elmaghraby approach
iterating over the starting time of each activity in this paper.

The convolution of multiple uniform random variables has been heavily studied for
many years. In fact, the sum of 𝑛 uniform distribution 𝑈(0,1) is known as Irwin-Hall distribution,
named after Joseph Oscar Irwin and Philip Hall, who wrote about it independently in 1927 (see
Irwin (1927) and Hall (1927) for detail). Irwin-Hall distribution has its own usage, but for our
purpose, we deal with activities duration (which is a random variable) that is distributed
uniformly between 𝑙𝑏& and 𝑢𝑏&, i.e., 𝑈(𝑙𝑏&, 𝑢𝑏&).

For 𝑛 uniform distribution where each of them is uniformly distributed according to
𝑈(𝑙𝑏$, 𝑢𝑏$)	∀𝑖 = 1,… , 𝑛, we also have papers such as: Olds (1952), Ueda et.al. (1994), Killmann
& von Collani (2001), and Bradley & Gupta (2002). We point out Olds (1952) or Killmann & von
Collani (2001, Theorem 2.2) that can be used for our purpose. But, since we plan to do
calculations differently, we do not need to elaborate further here.

3. Data and Model
Modeling for Work Content

It should be very easy and obvious to see that, if we assume that we declare a software
as feature complete/generally available (GA) after satisfactory integration testing, then the
Waterfall methodology in Figure 1 can be represented as the summation of 4 uniform random
variables, i.e., 𝑊&,𝑊),𝑊B, and 𝑊C, where: 𝑊& is the work content for requirement gathering
(which is normally done by Product Manager), 𝑊) is the work content for architectural software
design (which is normally done by Software Architect), 𝑊B is the work content for the
implementation (coding) that is normally done by Software Engineer (SE), and 𝑊C is the work
content for integration and testing (that is normally done by Software Quality Engineer or
Software Engineer in Test). Upon completion of the work context 𝑊C, we can declare the feature
complete (or declare the product generally available). With this, we essentially have:
𝑊$~𝑈E𝑙𝑏$,&, 𝑢𝑏$,&F	∀𝑖 = 1, 2, 3, &	4. The subscribe (𝑖, 1) indicate that the value of lower bound
(and upper bound) for activity 𝑖 if it is done by 1 person.

In our teams at Aplikasi Super, we work together in a group with the following numbers
of people from each stage (see column 𝑚$ in Table 2) and we are asked to complete the feature
in 𝑇KLM = 20 days (due date is about 1 month, i.e., 4 working weeks). Various information about
lower bound 𝑙𝑏$ and upper bound 𝑢𝑏$ for each activity 𝑖 are obtained based on a question and
answer like we have explained before. One of us works as an Associate Product Manager during
the process and completes multiple feature releases using this Waterfall methodology over six-
month period. The unit cost for each activity 𝑖, i.e., 𝑐$ is normalized to maintain privacy and
confidentiality. As we have briefly explain in the beginning, we found out that when we add

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8731

resources to an activity 𝑖, its lower bound and upper bound reduce. For simplicity, we assume
and model the work content as:

𝑊$,OP&~𝑛$,O𝑝$,O→OP&𝑈$,O	∀𝑖 = 1, 2, 3, 4	𝑎𝑛𝑑	∀𝑗 = 1, 2, … ,𝑚$
where: 𝑝$,O→OP& is a people (multiplication) factor when we increase resource to work on activity
𝑖 by 1.

Table 1. Resources, their Unit Costs, & Work content in one of Aplikasi Super feature

Data in Table 1 is used to illustrate our complete calculation as well as how we plan using

Waterfall methodology in our feature development. To make it realistic, we actually rounded
the value to the nearest integer after the multiplication. To further clarify, we have the following
situations to illustrate:
• During the requirement gathering, if it is done by 1 Product Manager, the work content is

given by 𝑊&~𝑈(4,8) man-days. But, it is done by 2 Product Managers, the work content
becomes 𝑊&~2 × 𝑈(3,6) man-days, and lastly if all 3 Product Managers collect the
requirement, the work content further reduces to 𝑊&~3 × 𝑈 X2

&
C
, 4 &

)
Y ≈ 𝑈(2,5) days. First,

notice that 𝑙𝑏) = 0.75 × 4 = 3 and 𝑙𝑏B = 0.75 × 3 = 2 &
C
≈ 2 (when there are 2 and 3

Product Managers working together respectively). Notice also that as we add more people
to work, the expected duration of the activity becomes shorter: the mean duration reduces
from CP^

)
= 6 days (if it is done by 1 person) to become BP_

)
= 4.5 days (if it is done by 2

persons) and it finally bests at)P`
)
= 3.5 days if all 3 product managers work on it.

• Similarly, for the testing stage, if it is done by 1 Software Quality Engineer (SQE), the work
content is given by 𝑊C~𝑈(5,10). However, when it is done by 2 SQEs, the work content
becomes 𝑊)~2 × 𝑈(4,8). Notice that in this case, the duration reduces from 7.5 days (if it is
done by 1 person) to 6 days (when 2 persons are doing the testing).

It is worth mentioning that this modeling is very realistic as we reiterate the now
(in)famous “Mythical Man Month” book by Fred Brooks (1975) that won the Turing award.
Notice that the people (multiplication) factor 𝑝$,O→OP& allows us to stretch or contract the Work
content random variable to be different at different resources level – this is the essence of
Brooks’ law. For example: Consider an activity to design a feature. It is very possible that adding
more people will cause the activity to be longer due to communication, etc. In fact, in the most
general form, we can simply stretch and contract the work content random variable as we add
1 additional resource, i.e., we have: 𝑊$,OP& ≠ 𝑊$,O	∀𝑖 = 1, 2, 3, 4	𝑎𝑛𝑑	∀𝑗 = 1, 2, … ,𝑚$.

Modeling for Cost on Resources

Following Elmaghraby (2005) and given that requirement gathering, software design,
implementation (coding), and integration (testing) are normally done by different people (with
different salary), we define the cost to complete the feature to be:

𝑇𝐶b =c𝑐$𝑊$

C

$d&

=c𝑐$𝑛$,O𝑈$,O

C

$d&

= 𝑐&𝑛&,O𝑈&,O + 𝑐)𝑛),O𝑈),O + 𝑐B𝑛B,O𝑈B,O + 𝑐C𝑛C,O𝑈C,O

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8732

where: 𝑐$ and 𝑊$,O are the unit cost (per person per day) and workcontent (man days) for activity
𝑖, and 𝑊$ = 𝑛$,O𝑈$,O – the work content is the random variable duration 𝑈$,O done by a 𝑛$,O
person.

To illustrate this cost, consider an example with 𝑐& = 1.7, 𝑐) = 1.5, 𝑐B = 1.4, and 𝑐C =
1.2 respectively (as in Table 1). Please note that we do not need the actual cost (in IDR), we just
need the relative value of one to the others.

Modeling for Cost of Tardiness

This cost is more difficult to measure in reality of software development. One possible
approach (to quantify it) is to measure the opportunity loss if the feature development is not
done on time. It will be easier if there is a binding contract with a clear penalty. Nonetheless,
management can associate a cost number, e.g., the unit time bonus of the entire group that
works on this feature when it is delivered late by (𝑡 − 𝑇KLM) days. For our purpose, we the cost
of tardiness will be by the following form:

𝑇𝐶hLij$/kll = 𝑐h × 𝑚𝑎𝑥{0, 𝑡 − 𝑇KLM}
where: 𝑐h is the unit cost of tardiness (per day). For our case, the managerial decide to use the
team bonus which is set to be 𝑐h = 5 per day (again this is normalized & relative measure with
respect to 𝑐$.

Sequential Decision & Quantifying Risk using Dynamic Programming

We can then easily solve the problem using Dynamic Programming as a 4-stage problem,
working backward, starting from Stage 4, and then Stage 3, Stage 2, and finally Stage 1. This is
illustrated with the network diagram in Figure 2.

Figure 2. Network representation of DP as 4-Stage problem

We should point out that Dynamic Programming is the most natural optimization
technique for sequential decision problems like what we have.

4. Numerical Computation and Discussion of Project Risk

There are few observations to make in Figure 2. First, we can calculate the project
completion time as 3 × 2 × 4 × 2 = 48 different convolutions of random variables using
Theorem 2.2 in Killmann & von Collani (2001).

Another alternative to solve the problem using Dynamic Programming is to work
backward. Given the due date of 𝑇KLM = 20 days, we can just use discritization of time interval
with ∆𝑡 = 1 day. Notice that from Table 1, if we look at only using 1 resource for all stages, the
project completion time is given by 𝑙𝑏 = 21 and 𝑢𝑏 = 42. Similarly, we can see that using all
resources (𝑚& = 3,𝑚) = 2,𝑚B = 4,𝑚C = 2) will give 𝑙𝑏 = 12 and 𝑢𝑏 = 22 to complete the
project.

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8733

Given that due-date of the project is 𝑇KLM = 20, we can start the calculation backward
as follows:

Stage 4 (Testing):

Assume that 𝑡C is the start of doing testing (i.e., the starting time of Stage 4). Since we
discretize with ∆𝑡 = 1 day, we want to point out that the work content will be made simpler as
well to be daily. For example: 𝑊C,) = 2 × 𝑈(4,8) man-days is approximated with 2 persons with
duration 𝑝C that is discretized into 4, 5, 6, 7, & 8 days – each day having probability = 0.2 (= &

`
).

The total cost (as well as optimal decision – in green color) for Stage 4 for various starting time
𝑡C is given in Table 2.

Table 2. Expected total cost & optimal decision for Stage 4 with various starting time 𝒕𝟒

There are several interesting points that are worth mentioning from Table 2. We denote

that 𝑗 = 1 and 𝑗 + 1 = 2, and first, notice that when the starting time 𝑡C ≤ 12	E= 𝑇KLM −
𝑢𝑏C,OP&F, using 𝑚C = 2 persons to do testing will cost a constant = 14.4 = 2 × 1.2 × CP^

)

because it will never be late (recall that with 2 persons, the duration for testing will be at worst
8 days. Similarly, when 𝑡C ≤ 10	E= 𝑇KLM − 𝑢𝑏C,&F, using 𝑚C = 1 SQE, the total cost is a constant
9 = 1 × 1.2 × `P&u

)
. Hence, given the linear nature of resource cost, it is clear that when 𝑡C ≤

10, it is better to use 1 SQE to do the testing. The next interesting question becomes, when it
becomes beneficial to use 2 SQEs?

When 𝑡C > 16	E= 𝑇KLM − 𝑙𝑏C,OP&F, is clear that using all resources (2 SQEs) will not be
able to avoid tardiness since the best is just 4 days. Hence, the costs, that we have to compare,
are:
• Using 1 SQE: 𝑇𝐶 = 𝑐C × 1 × X

`P&u
)
Y + 𝑐h X16 +

`P&u
)

− 20Y = 7.5𝑐C + 3.5𝑐h, vs

• Using 2 SQEs: 𝑇𝐶 = 𝑐C × 2 × X
CP^
)
Y + 𝑐h X16 +

CP^
)
− 20Y = 12𝑐C + 2𝑐h.

This realization can be written as in Lemma 1.

Lemma 1:

Given the condition [1] for Stage 4, i.e., 𝑊C,OP&~𝑛C,O𝑝C,O→OP&𝑈C,O	∀𝑗 = 1, 2, … ,𝑚C and
𝑇𝐶 = 𝑐C𝑛C,O𝑈C,O + 𝑐h × 𝑚𝑎𝑥{0, 𝑡 − 𝑇KLM}, necessary condition to switch resource utilization
from 𝑛C,O to 𝑛C,OP& ∀𝑡C > 𝑇KLM − 𝑙𝑏C,OP& is given by:

vw
vx
>

E/x,yz.{|}x,yz.~�/x,y{|}x,y~F
E{|}x,yz.~�{|}x,y~F

Proof:
Straightforward as explained in the previous paragraph.∎

We would like to remark that the condition in Lemma 1 above implies that
𝑊C,O~𝑛O𝑈C,OE𝑙𝑏O, 𝑢𝑏OF and 𝑊C,OP&~𝑛OP&𝑈C,OE𝑙𝑏OP&, 𝑢𝑏OP&F with 𝑙𝑏OP& < 𝑙𝑏O and 𝑢𝑏OP& < 𝑢𝑏O.

With inequality [4], we can see that the cost of tardiness 𝑐h >
E/x,yz.{|}x,yz.~�/x,y{|}x,y~F

E{|}x,y~�{|}x,yz.~F
𝑐C =

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8734

)×_�&×�.`
�.`�_

𝑐C = 3𝑐C = 3.6 in order for optimal decision to switch using more resources ∀𝑡C >
𝑇KLM − 𝑙𝑏C,OP&.

With inequality [4] in Lemma 1, we know that ∀𝑡C ≤ 𝑇KLM − 𝑢𝑏C,&, the optimal decision
is to use 1 SQE, and ∀𝑡C ≥ 𝑇KLM − 𝑙𝑏C,Kx, the optimal decision is to use all 𝑚C resources. In
Stage 4, we just need to enumerate 𝑡C ∈ [𝑇KLM − 𝑢𝑏C,&, 𝑇KLM − 𝑙𝑏C,Kx]. This helps to ease the
curse of dimensionality in Dynamic Programming, we don’t need to enumerate all possible
values for 𝑡C. In theory, we don’t need to consider when 𝑡C < 10 since we know that using 1
SQE will be sufficient to complete the task. In general, the switching point to use 2 SQEs (more
resources) will happen when inequality [4] holds which is in our case since 𝑐h = 5 > 3.6 satisfy
the condition.

Now, we can expand further to consider if 𝑚C > 2. Luckily, we can still use inequality
[4] since it is general enough. Consider the following example in Table 5 (the only change is 1
additional resource in Testing (stage 4).

Table 3. Equivalent to Table 1, except 1 additional resource in Testing stage

With more available resources in Stage 4, we need to check 𝐶)B = 3 inequalities from [4],
namely:

• vw
vx
> E/x,�{|}x,�~�/x,.{|}x,.~F

E{|}x,.~�{|}x,�~F
= 3 (as before),

• vw
vx
> E/x,�{|}x,�~�/x,�{|}x,�~F

E{|}x,�~�{|}x,�~F
= (B×C.`�)×_)

(_�C.`)
= 1, and

• vw
vx
> E/x,�{|}x,�~�/x,.{|}x,.~F

E{|}x,.~�{|}x,�~F
= (B×C.`�&×�.`)

(�.`�C.`)
= 2

Given that our condition meet, then we have the following expected total cost and
optimal decision in Stage 4 for various values of 𝑡C.
Table 4. Expected total cost & optimal decision for Stage 4 with various starting time 𝒕𝟒 with

𝒎𝟒 = 𝟑

Notice that managerially the expected total cost reduces by the additional SQE resource

since we can go all out if we realize that the completion is late to avoid the steep tardiness
penalty. However, this extra resource provide extra computation since the 𝑙𝑏C,B becomes lower.
Hence, 𝑇KLM − 𝑙𝑏C,B = 20 − 3 = 17 becomes bigger, i.e., enumeration space 𝑡C ∈ |𝑇KLM −
𝑢𝑏C,&, 𝑇KLM − 𝑙𝑏C,B~ = [10,17].

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8735

Stage 3 (Implementation)
Using the same reasoning to cut the enumeration, we just need to enumerate for 𝑡B ∈

[4, 12]. The reason is very simple. From Table 2, we can see that the fastest that Stage 1 & 2 can
finish is 𝑙𝑏&,B = 2 and 𝑙𝑏),) = 2. This defines the minimum starting time 𝑡B = 4. Similarly, given
that the maximum upper bound 𝑢𝑏B,& = 15 and we have calculated the previous 𝐸[𝑇𝐶(𝑡C)] for
𝑡C = 24, we can see that we just need to calculate for 𝑡B = 24 − 15 = 9. Table 5 has the
complete enumeration for functional equation [5]:

𝐸[𝑇𝐶(𝑡B)] = � &
(0,��+,�P&)

X𝑐B𝑚B ∑ 𝑡B + 𝐸[𝑇𝐶(𝑡C)]
0,�
��d+,� Y�	

with the transformation function 𝑡C,O = 𝑡B,O + 𝑑B,O where: 𝑑B,O is the random variable duration
to finish Implementation (Stage 3) using level 𝑗 of resources. For clarify, with 𝑗 = 3 (i.e., using 3
Software Engineers, we have 𝑑B,B = 5, 6, 7, 𝑎𝑛𝑑	8 days, each having probability of &

C
= 0.25). We

tabulated the result in Table 5 (and mark the optimal decision with green color).
It is very important to understand that in the functional equation [5] the second term,

i.e., 𝐸[𝑇𝐶(𝑡C)] are independent from the value of 𝑚B. It is just defined by the transformation
function 𝑡C,O = 𝑡B,O + 𝑑B,O. Therefore, we can take advantage of this property in our computation
implementation.

Table 5. Expected total cost & optimal decision for Stage 3 with various starting time 𝒕𝟑

It is interesting to see that the optimal decision for Stage 3 is almost at the extreme,

namely: when the starting point of implementation 𝑡B can be done early (e.g., day 3 or 4), we
can use 1 Software Engineer to do the job because we still have a chance to catch up if it slips.
However, when the starting time for Stage 3 is tight, i.e., 𝑡B ≥ 7, the decision is to use up all (i.e.,
4 SEs). It is interesting to note the combinatoric nature of the problem when 𝑡B = 6, then the
best decision is to use 3 SEs (rather than 4 SEs). Of course, this is also dependent on the cost
structure. To illustrate this point, consider the following Table 8 if the unit cost of software
engineer is changed to become 𝑐B = 1.75, we have a different optimal decision for 𝑡B = 7.

Table 6. Different optimal decision for Stage 3 with various starting time 𝒕𝟑 if 𝒄𝟑 = 𝟏. 𝟕𝟓

Stage 2 (Design) & Stage 1 (Requirement)
Lastly, using the same reasoning, we can obtain the sequential optimal decision for Stage

2 (Design) and Stage 1 (Requirement Collection) respectively to be in Table 7.
Table 7. Expected TC & optimal decision for Stage 2 & Stage 1 with various starting times 𝑡)

and 𝑡& = 0

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8736

The minimum expected cost is 44.96, and the overall optimal decision is to collect all
requirements at the beginning as fast as possible using all 3 PMs so that the requirement
becomes very clear and solid. Then, it is sufficient to use 1 Software Architect to design the
feature that Aplikasi Super needs for the Web Dashboard to do the Business Process. Of course,
depending on the completion timing of Stage 3 & various cost structures, a certain number of
SEs (1, 3, or 4 SEs) may be needed to finish the Web Dashboard feature. Lastly, and again
depending on the starting time of Stage 4, the best decision is either utilize all 2 available SETs
(if 𝑡C is rather late) or just use 1 SET if there is enough time to do testing.

This backward Sequential Decision approach using Dynamic Programming provides a
clear blueprint on what a manager should do at each stage depending on the outcome of the
previous stage.

Of course, as we can see in the numerical computation of Stage 4 and Stage 3, some
flexibility may be needed to adjust the number of resources in order to complete the project
with minimal cost. This optimal decision may be better achieved if team members have the
flexibility (agility) to switch roles rather than static on one particular role.

5. Conclusion and Further Research

We have demonstrated a very simple backward sequential decision process using
Dynamic Programming to address one of the biggest drawbacks of Waterfall methodology,
namely: risk management. With this technique, managers will have a blueprint on how to react
for every stage of decision. We used Waterfall methodology successfully in the development of
3 different new features at Aplikasi Super.

Starting planning optimization backward with the Testing stage gives the decision maker
a clear picture about the trade-off that needs to happen. Hence, provide a clear approach to
manage the risk as the project progresses. The numerical example also illustrates the need to
capture all requirements as clearly as possible using all available resources so that the later
stages can be optimized better. Furthermore, flexibility in the resources for the later stage is
very crucial to anticipate the possibility of using different resources. Therefore, it is
recommended that a company has this type of flexible resources that can take different roles at
different stages.

The modeling of sequential decisions here is very generic. It can accommodate the fact
that adding more resources can create a more chaotic environment (Brooks’ law) by proper
modeling of the work content.

It is well known, though, that this DP approach suffers from what is called the curse of
dimensionality. However, in this particular sequential process, by iterating over the starting
time, we can reduce some enumeration by considering forward as well as backward processes
and some conditions. Similarly, noting that our backward optimization optimizes on starting
time, we can reduce the storage requirement.

For the future, a more formal way to reduce the computational of DP may be needed.
This will be an interesting subject to be pursued.

References
Felix Torres and Herbert D. Benington, presentation at Navy Mathematical Computing Advisory

Panel, Symposium on advanced programming methods for digital computers, Office of

Bisono dkk, (2024) MSEJ, 5(2) 2024: 8728-8737

8737

Naval Research, Dept. of the Navy, Washington, D.C., 28 – 29 June 1956. Reprinted with
foreword in H. D. Benington (1983), "Production of Large Computer Programs", Annals of
the History of Computing, Vol. 5, No. 4, October 1983, pp. 350 – 361.
https://doi.org/10.1109/MAHC.1983.10102.

Hall, Philip (1927), "The Distribution of Means for Samples of Size N Drawn from a Population in
which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable",
Biometrika, Vol. 19, No. 3/4., pp. 240 – 245. https://doi.org/10.2307/2331961.

Irwin, J.O. (1927), "On the Frequency Distribution of the Means of Samples from a Population
Having any Law of Frequency with Finite Moments, with Special Reference to Pearson's
Type II", Biometrika, Vol. 19, No. 3/4., pp. 225 – 239. https://doi.org/10.2307/2331960.

Olds, E. G. (1952), “A Note on the Convolution of Uniform Distributions”, The Annals of
Mathematical Statistics, 23(2), pp. 282 – 285. http://www.jstor.org/stable/2236455.

Wagner, H. M., & Whitin, T. M. (1958), “Dynamic Version of the Economic Lot Size Model”,
Management Science, 5(1), pp. 89 – 96. https://doi.org/10.1287/mnsc.5.1.89.

Royce, Winston (1970), "Managing the Development of Large Software Systems", Proceedings
of IEEE WESCON, 26 (August), pp. 1 – 9. Republish in: Proceedings of the 9th international
conference on Software Engineering, IEEE Computer Society Press, Washington, DC, USA
(1987), pp. 328 – 338.

Brooks, Frederick P. (1975), The Mythical Man-Month: Essays on Software Engineering, Reading,
Mass., Addison-Wesley Pub. Co.

Thomas E Bell and Thomas A Thayer (1976), “Software Requirements: Are They Really a
Problem?”, in Proceedings of the 2nd international conference on Software engineering
(ICSE ‘76), IEEE Computer Society Press, Washington, DC, USA, pp. 61 – 68.

Sei Ueda, Sohei Okada, Hajime Sato, & Kuno Shimizu (1994), “Distribution of the Sum of Uniform
Random Variables with Different Ranges", SUT Journal of Mathematics, Vol. 30, No. 1, pp.
65 – 73.

Elmaghraby, Salah. (2005), “On the Fallacy of Averages in Project Risk Management”, European
Journal of Operational Research, Vol 165, https://doi.org/10.1016/j.ejor.2004.04.003.

Killmann, Frank and von Collani, Elart (2001), “A Note on the Convolution of the Uniform and
Related Distributions and Their Use in Quality Control”, Economic Quality Control, Vol. 16,
No. 1, pp. 17 – 41. https://doi.org/10.1515/EQC.2001.17.

Van Casteren, Wilfred. (2017). The Waterfall Model and the Agile Methodologies : A comparison
by project characteristics. https://doi.org/10.13140/RG.2.2.36825.72805.

Hillier, F. S., & Lieberman, G. J. (2021), Introduction to operations research, 11th Ed, New York:
McGraw-Hill.

Theo Thesing, Carsten Feldmann, Martin Burchardt (2021), “Agile versus Waterfall Project
Management: Decision Model for Selecting the Appropriate Approach to a Project”,
Procedia Computer Science, Volume 181, pp. 746 – 756.
https://doi.org/10.1016/j.procs.2021.01.227.

Chandran, K., & Das Aundhe, M. (2022), “Agile or Waterfall Development: The Clementon
Company Dilemma”, Journal of Information Technology Teaching Cases, Vol. 12 No. 1, pp.
8 – 15. https://doi.org/10.1177/2043886919870544.

