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ABSTRACT  

Heterogeneous Wireless Sensor Networks (HWSN) are basically decentralized and distributed systems that 

playing a crucial role in numerous Internet of Things (IoT) applications, enabling efficient monitoring and 

data collection. However, these networks often suffer from high latency, routing overheads, and energy 

consumption. To meet these challenges effectively,  This article proposes an enhanced CSMA/CA protocol 

based on an Optimal Robust Dynamic Query-Driven Clustering Protocol (ECODQC) model. The enhanced 

model includes two key components: the improved CSMA/CA protocol, which reduces network collisions, 

lowering delay and overhead during communication, and the Optimal Robust Dynamic Query-Driven 

Clustering (ODQC) protocol, which efficiently reduces energy consumption among sensors. In the first 

phase, the modified CSMA/CA protocol focuses on analyzing communication delays, defining dynamic data 

transmission, and evaluating data delivery beyond predefined times. In the second phase, the ODQC 

protocol addresses optimal load balancing and the dynamic process of cluster head selection, aiming to 

reduce energy consumption during sensor communication. The proposed techniques demonstrate 

superiority over conventional protocols and are recommended for enhancing the overall quality of service 

in decentralized, distributed HWSN-based IoT networks.  The ECODQC model is compared against 

existing methods using the NS2 simulation platform in two scenarios: the varying numbers of nodes and 

varying speeds. The performance parameters of this proposed model are analyzed in terms of energy 

efficiency, cluster head efficiency, data success rate, computational delay, and node throughput. The 

Results demonstrate that ECODQC proves to be superior compared to existing techniques in terms of 

energy efficiency of 432.23 J, low latency of 85.23 ms, and increased throughput of 813.77 Kbits/s. With 

these observations, the possibility of using ECODQC with a high level of applicability in real-time IoT 

scenarios is evident 

.Keywords:  MAC layer, CSMA/CA, Sensor Networks, Clustering, Quality of Service, Energy Efficiency 

 

1. Introduction  

The general requirement of any network model is that it has to transfer the information 

from one place to another using a suitable path (Tushar et al., 2020). In the case of the 

Heterogeneous Wireless Sensor Networks (HWSN) network, selecting the best path for data 

transmission is highly essential to balance the load and attain maximum efficiency (Pal et al., 

2024). Additionally, several methods are introduced in HWSN to prolong the network's lifetime 

(Guedmani & Ould Zmirli, 2024). The recent advancement in wireless communication is that it 

gets incorporated with the Internet of Things (IoT) so that this technology can be widely utilized, 

which includes big data-driven applications )Pandey et al., 2025(. The HWSN-based IoT 

environment is rapidly developed (Shafique et al., 2024); hence, it can handle high-speed data 

transmission according to the allocated time period, and it provides a way for the development of 

a huge number of innovative devices with the help of cloud stations (Alsharif et al., 2024), 

(Chaurasiya, Biswas, et al., 2023). The structure of the HWSN-based IoT environment is 

illustrated in Fig.1. 
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Fig. 1. HWSN-based IoT environment 

 

In HWSN, energy utilization of sensors plays a major role in attaining maximum lifetime, 

as it concentrates on cooperative data processing (Chaurasiya, Mondal, et al., 2023). Hence, with 

sensors maintaining limited energy, non-cooperative transmission consumes more power 

(Alsaqour et al., 2022), which can affect the network performance (Jubair, Hassan, Aman, & 

Sallehudin, 2021). Thus, in most cases, a cooperative form of communication is carried out that 

performs certain activities like data management, collection, and grouping, thereby reducing the 

power utilization of the individual sensor, an area of focus for researchers (Krishnamurthi et al., 

2020). In earlier studies, several CH selection processes maintained sensor trustworthiness 

through the trust calculation process (Fan & Xin, 2025), (Fang et al., 2020). In any densely 

populated area, sensors are grouped into clusters utilizing various innovative methods (Jubair, 

Hassan, Aman, Sallehudin, et al., 2021). Generally, data points with similar attributes are 

combined to form the clusters. Subsequently, the entire network is analyzed, and the collected 

data is evaluated; this process is defined as aggregation (Vo et al., 2024). This method is 

introduced to increase network lifetime via a statistical analysis of data, which makes it more 

compact. The clustered network consists of two sensor types: The Cluster Head (CH) and the 

sensors present in its coverage area are turned into its Cluster Member (CM) (Babu & Geethanjali, 

2024; Jubair et al., 2024). Furthermore, the clustered network structure for the HWSN network is 

illustrated in Fig. 2. 

 

 

Fig. 2. HWSN clustered architecture. 

Some optimization-based clustering processes are introduced in the HWSN-based IoT 

network to reduce both the delay and power utilization of the heterogeneous sensors (Gupta et al., 

2021). Such meta-heuristic algorithms include artificial bee colony (ABC) (Sood & Sharma, 
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2022b) and evolutionary algorithms (Xie et al., 2020), the Monarchy Butterfly Optimization 

Algorithm (MBOA) (Prakash & Pandey, 2023),(Yue et al., 2024), which perform optimal CH 

selection, resulting in extraordinary performance. Recently, CH selections have been performed 

in a manner that provides trust-based secure selection, which greatly aids in increasing HWSN 

network performance in an IoT environment (Mengistu et al., 2024). Despite the significant 

progress in HWSN clustering protocols and MAC layer improvements, various limitations still 

exist (Alomari et al., 2022) (Famitafreshi et al., 2021). Current methods fail to jointly optimize 

both energy efficiency and communication latency concurrently in the face of dynamic and 

constrained resources (Malik et al., 2021). Traditional clustering models (Al-Sulaifanie et al., 

2022), for instance, usually employ static cluster head selection, resulting in submaximal 

consumption of energy and even node premature failures. Moreover, current MAC protocols 

suffer from high collision probabilities and longer transmission latency due to inefficient backoff 

policies, especially for dense sensor placements. These limitations become vital in the context of 

applications enabled by the IoT, where timely and accurate delivery of data assumes importance. 

To overcome these limitations, we propose in this paper a novel Enhanced CSMA/CA Protocol-

Based Optimal Robust Dynamic Query-Driven Clustering (ECODQC) paradigm combining a 

double-layer backoff mechanism with a novel, energy-aware clustering algorithm dramatically 

increasing the throughput, stability, and energy efficiency of HWSNs. The major contributions of 

this research are described as follows: 

 

i. To Design a new Enhanced CSMA/CA protocol that is specifically developed for the 

minimization of network collisions and reduction of latency in HWSNs. This design uses 

a dual back-off mechanism, namely, Main Back-off and Secondary Backoff, to handle 

variable delays effectively, which reduces access collisions and improves packet 

transmission efficiency. 

ii. To Develop CSMA/CA protocol-based optimal robust dynamic query-driven clustering 

mechanism, namely ECODQC, which selects CHs dynamically to balance the load and 

optimize energy utilization. This approach enhances QoS and network lifetime in IoT-

enabled HWSNs by integrating energy-efficient clustering. 

iii. To practically prove the feasibility of the implementation of the ECODQC approach in 

realistic scenarios of HWSN and highlight its adaptability and dependability for IoT-

based applications. 

iv. To Extensive NS2 simulations were conducted in order to validate the proposed model 

of ECODQC and confirm that it offers improvement in energy efficiency, throughput, 

computation delay, data success rate, and network lifetime in contrast with existing 

methods. 

With the expanding dependence on IoT systems to support vital national requirements of 

precision agriculture, disaster resilience, and intelligent infrastructure development, optimal 

communication in HWSNs has taken a strategic importance. The ECODQC model proposed in 

this paper directly supports these aims through facilitating energy-efficient and delay-tolerant 

communication. The study hence aligns with national initiatives aimed at sustainable 

development, digital transformation, and effective public service delivery through technology. 

This article is organized as follows: Section 2 presents the analysis of earlier cluster-based 

sensor models and identifying their drawbacks. Section 3 covers preliminaries and foundational 

concepts, and the proposed ECODQC model is elaborated on regarding its network structure and 

clustering process. In Section 4, the performance of ECODQC is compared and analyzed with 

earlier methods; finally, Section 5 provides the conclusion of the paper, which includes its 

limitations and future research directions. 
 

 

2. Literature Review 

This section describes the most common enhancements of CSMA/CA protocols and the 

development of dynamic clustering methodologies, highlighting their novelty and improvements 

over existing methods. We first provide an overview of traditional approaches and then review 

the most current techniques. In (Priyadarshini & Sivakumar, 2021), the work  employs AVL tree 
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rotation clustering and MCDS-MI techniques to achieve load balancing and improve network 

lifetime. This approach delivers a 50% reduction in network size, a 60% increase in network 

lifetime, and a 47.76% reduction in residual energy consumption. In (Mehra et al., 2020), the 

authors proposed fuzzy-based CH selection, considering residual energy, proximity to the sink, 

and local node density. FBECS calculates an eligibility index to select the CH, promoting load 

balancing and also offering improved stability, longer network lifespan, and enhanced data 

forwarding to the sink. In (Wang et al., 2019), the work proposes an efficient inter-cluster 

communication mechanism among nodes which consists of three key components: a novel layer 

scheme for self-organizing local nodes, a multi-hop path selection algorithm to choose relay nodes 

for data forwarding to CH and a secure communication mechanism to protect source node privacy 

within the cluster. This approach considers residual node energy in relay node selection, leading 

to improved network lifetime and data transmission efficiency. 

In (Saoud et al., 2023), the authors presents an emerging WSN routing protocol that 

minimizes energy usage and maximizes the life of the network by choosing cluster heads from 

the sensor node energies using the Firefly Algorithm. The proposed strategy represents more 

efficient energy usage and packet delivery to the base station to maximize the life of the WSN. In 

(Karunanithy & Velusamy, 2020), the wok focuses on optimizing water and fertilizer delivery in 

agriculture utilizing residual energy-based CH selection and Unmanned Aerial Vehicles for wide-

area data collection. Tested in sugarcane fields, the system automates irrigation and fertigation, 

achieving substantial water savings, of only 25.08% compared to existing methods. The work of 

(Fanian et al., 2021)  introduce a parameter selection-shuffled frog leaping algorithm (PS-SFLA), 

a technique that uses the shuffled frog leaping model to select these parameters, with three 

versions for progressive evaluation. PS-SFLA, significantly improves network lifetime by 

tailoring fuzzy input parameters to specific applications and purposes. 

The study of (Karunanithy & Velusamy, 2020) presents CTEEDG, a Cluster-Tree efficient 

data collection process, integrating WSN and the IoT to enhance network lifetime and throughput. 

It utilizes fuzzy logic for CH election and establishes efficient inter-cluster communication 

topology. In (Yarinezhad & Hashemi, 2019), the author presents an approximation algorithm with 

a 1.1 approximation ratio to address the load-balanced clustering problem in WSN. The algorithm, 

designed for large-scale WSNs, employs a virtual grid infrastructure and provides practical 

solutions. It also introduces a routing algorithm that optimizes power utilization and balance. In 

(García-Nájera et al., 2021), the authors addresses the multi-objective problem of CH selection, 

considering distance, delay, and residual energy. It employs three multi-objective evolutionary 

algorithms and evaluates their performance and trade-offs. The assessment of the solutions' 

effectiveness in terms of lowering power utilization is conducted with the objective of improving 

the lifetime of the network. 

In (Maheshwari et al., 2021), the work tackles energy constraints in WSN by applying 

Butterfly Optimization for optimal cluster head selection and Ant Optimization for route 

optimization to the base station. The proposed methodology surpasses traditional approaches in 

alive nodes, achieving 200 alive nodes at 1500 iterations. In (Guleria et al., 2021), the authors 

present the Enhanced Clustering model for tracking events in WSNs, especially in habitat 

monitoring. Mobile nodes select CHs based on placement and energy levels, and relay nodes, 

selected by velocity and location, assist in data transmission to the BS via sensor data fusion. This 

method reduces overall power utilization by leveraging fixed and mobile nodes. In study of (Sood 

& Sharma, 2022), introduce the Enhanced-Threshold model, a clustering protocol for efficient 

coverage in HWSN. LUET reduces isolated nodes by considering node energy and proximity to 

lines of uniformity. This approach accomplishes superior performance in network lifetime, power 

efficiency, death rate, isolated nodes, and throughput.  

In (Malisetti & Pamula, 2020), the study tackles the energy consumption challenge in WSN 

by proposing a CH selection based on the optimization of the quasi-oppositional butterfly. This 

scheme outperforms existing methods in terms of energy efficiency and network lifetime, offering 

significant improvements. The study by (Gong et al., 2022), is introduce Query-Driven Clustering 

(QDC) for enhancing WSN's energy efficiency. QDC employs network partitioning, low-energy 

centralized sub-network maintenance, query-driven clustering, and energy-efficient load-

balanced routing. In (Santhosh & Prasad, 2023), the authors introduce EOR-iABC, an energy-
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efficient routing scheme for cluster-based WSN. EOR-iABC uses an improved artificial bee 

colony algorithm to select energy-efficient cluster heads, minimizing energy consumption and 

prolonging network lifetime.  

After analyzing all existing methods, certain drawbacks are identified. Table 1 provides a 

concise overview of prior research contributions and limitations. The key requirements for the 

current HWSN IoT networks are increasing network stability, enhancing the CH selection 

process, enabling effective power utilization, and prioritizing packet forwarding. To address these 

needs, the ECODQC model is proposed, which is elaborated in the next section. 
 

Table 1 - Comparative Analysis of Existing Techniques from the Literature 
Ref Proposed Method Major Contributions Limitations 

(Priyadarshini 

& Sivakumar, 

2021) 

Minimum Connected 

Dominating Set with 

Multi-hop Information 

(MCDS-MI) and Bi-

Partite Graph (BG) 

Introduces a hybrid CH 

selection mechanism MCDS-

MI + BG to minimize CH count 

and energy use. 

Does not consider 

security or privacy 

mechanisms in routing or 

CH election 

(Mehra et al., 

2020) 

Fuzzy-Based 

Enhanced Cluster 

Head Selection 

(FBECS) algorithm 

Implements fuzzy logic 

(Mamdani method) to handle 

uncertainties and improve CH 

selection efficiency. 

 

Mobility and dynamic 

topology conditions are 

not evaluated; all nodes 

and BS are assumed 

static. 

(Wang et al., 

2019) 

Energy Efficient Intra-

Cluster Scheme 

(EEICS) 

Develops a secure data 

transmission approach using 

random numbers known only 

by nodes and cluster head 

Computational 

complexity due to the 

secure communication 

method  

(Saoud et al., 

2023) 

new clustering-based 

routing protocol 

optimized by the 

Firefly Algorithm 

(FFA). 

Utilizes the Firefly optimization 

algorithm to effectively select 

CHs 

 

Does not address security 

issues in data 

transmission. 

(Karunanithy 

& Velusamy, 

2020) 

Efficient Scalable 

Data Collection 

Scheme (ESDCS) 

Introduces waiting-time-based 

CH selection to uniformly 

balance energy consumption. 

 

UAV path optimization 

complexity could 

introduce computational 

overhead 

(Fanian et al., 

2021) 

Shuffled Frog Leaping 

Algorithm (SFLA) 

Introduces an adaptive fuzzy 

input parameter selection 

method based on SFLA 

Assumes static nodes 

without mobility 

considerations. 

(Karunanithy 

& Velusamy, 

2020) 

Cluster-Tree based 

Energy Efficient Data 

Gathering (CTEEDG) 

protocol 

Develops a fuzzy logic-based 

CH selection to achieve 

uniform distribution and 

balanced energy consumption. 

Security mechanisms and 

data integrity aspects are 

not incorporated. 

(Yarinezhad 

& Hashemi, 

2019) 

RFPT (Routing 

algorithm based on an 

FPT-approximation 

algorithm) 

Introduces an FPT-

approximation algorithm with a 

precise approximation ratio 

(1.1). 

 

Does not address 

security, reliability under 

failures, or real-time 

delay and latency 

explicitly. 

(García-

Nájera et al., 

2021) 

multi-objective cluster 

head selection 

problem 

Performs a comprehensive 

multi-objective optimization 

analysis to clearly identify and 

quantify objective conflicts in 

the CH selection problem. 

Does not evaluate 

scenarios with node 

mobility; static networks 

are assumed. 

(Maheshwari 

et al., 2021) 

Energy-efficient 

Cluster-based Routing 

Protocol 

 

Applies BOA to optimize CH 

selection based on multiple 

parameters 

Does not consider node 

mobility; assumes static 

sensor nodes and static 

BS placement. 

(Guleria et al., 

2021) 

An Enhanced Energy 

Proficient Clustering 

(EEPC) algorithm 

Novel relay node selection 

using enhanced PSO based on 

velocity, location, and fitness 

values.  

Algorithm complexity is 

O(n), which may become 

costly in very large-scale 

WSNs. 
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(Sood & 

Sharma, 

2022) 

LUET protocol 

(Lines-of-Uniformity 

based Enhanced 

Threshold) 

LoU-based CH selection 

mechanism enhances coverage 

and reduces isolated nodes. 

cluster head election 

depends on centralized 

computation, which 

limits scalability 

(Malisetti & 

Pamula, 

2020) 

Quasi-Oppositional 

Butterfly 

Optimization 

Algorithm (QOBOA) 

Introduced QOBOA for CH 

selection to improve energy 

efficiency and network lifetime. 

Centralized execution at 

the base station limits 

scalability and 

adaptability in large-

scale 

(Gong et al., 

2022) 

Query-Driven 

Clustering (QDC) 

protocol 

Introduces an estimation-based 

scheme to maintain network 

information at low energy 

consumption and high 

scalability. 

Potential computational 

overhead of centralized 

clustering and estimation 

mechanisms under very 

large-scale networks. 

(Santhosh & 

Prasad, 2023) 

Energy Optimization 

Routing Improved 

Artificial Bee Colony 

(EOR-iABC) method 

Uses iABC algorithm, 

enhanced by GEM and Cauchy 

operators, to perform global and 

local searches dynamically for 

selecting CHs. 

Lacks mechanisms for 

security and privacy in 

data transmission. 

 

 

3. Preliminaries and Foundations 

 3.1 Network Structure 

The ECODQC approach, as developed, has three distinct steps. During the first stage, 

energy-efficient clusters are created by leveraging the spatial correlation of data among 

neighboring nodes. The ECODQC approach, which stands for robust regression, is used for the 

purpose of identifying neighbor nodes that exhibit spatial correlation. Every non-CH node is 

linked to a CH node that has a significant amount of remaining energy and has a strong 

resemblance in data with the non-CH node. Following the establishment of clusters, the 

subsequent step involves the creation of a dependable backbone network structure connecting all 

the CH nodes for the purpose of communication with the stationary sink. The backbone enables 

the determination of the most energy-efficient path, having high-quality connection, from a CH 

to the sink. During phase three, intra-cluster and inter-cluster communication methods for data 

transmission were introduced. Instead of collecting all the sensed information from the nodes 

belonging to the cluster, each CH expects the sensed information of their corresponding member 

nodes. Next, each CH processes the task of data aggregation by taking the average of all the 

expected information and sends the aggregated information to the sink through the inter-cluster 

backbone connection. 

 

3.2 Energy Model 

The calculation of expended energy in the WSN is based on the reference of the functioning 

configuration sheet of Mi-caZ 2.4GHz IEEE 802.15.4 motes.  The calculation of energy 

consumption for transmitting a quantity of data, measured in k bytes, is as follows:  

   𝐸𝑟𝑥(𝑘) =  𝑃𝑟𝑥 × 𝑇𝑟𝑥(𝑘)      (1) 

Where  𝑃𝑟𝑥 = 𝑣𝑜𝑙𝑡 × 𝐴𝑚𝑝𝑒𝑟𝑒 represents the amount of energy expended (measured in 

Joule/sec) during the process of receiving a packet. In this equation, 𝑇𝑟𝑥 refers to the time of 

receiving k bytes of data. If the data transmission rate is 𝑅 𝑘𝑏𝑝𝑠, then the time duration of 

transmitting or receiving k bytes of data can be calculated as  
(

𝑘

1000
)

𝑅
  seconds. The time required 

to transmit or receive k bytes of data may be determined by dividing the size of the data (k) 

by 
(

𝑘

1000
)

𝑅
 seconds. Several packets are transmitted across the network throughout the clustering 

process, backbone formation, and data communication.  

.  
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3.3 Threshold Energy Computation 

In general, the implementation of uniform cluster head rotation mitigates network energy 

depletion since cluster heads are tasked with data aggregation and relay. Thus, it is important to 

examine the stability of the node chosen as the CH in terms of its energy parameter, since it 

depletes the remaining energy at a high pace. The stability analysis of a sensor node's cluster head 

candidacy involves computing a threshold energy parameter in ECODQC. The threshold energy 

parameter refers to the minimum residual energy that a sensor node must possess in order to 

function as a dependable cluster head for the purpose of effectively disseminating data. According 

to the specifications of the employed energy model, the energy consumption rate of sensor nodes, 

denoted as 'ECP', is dependent on the square of the distance between the sources and sink nodes, 

as expressed in equation (2). 

            

     𝐸𝐶𝑃 =
𝑑𝑖,𝑠

𝑑𝑖,𝑘+𝑑𝑘,𝑠

                     (2)  

 

Where the variables "i" and "k" are used to denote the inter-distance between the source 

and the cooperative intermediate node. This node is characterized by having a route length that is 

less than a specified value "m". The optimum consumption of sensor nodes occurs when the ECP 

reaches its highest value at 𝑘 = 1, where k represents the position of the node in the shortest 

routing route from 𝑖 to 𝑠. The primary objective of this analysis is to establish a dependable 

shortest route between the sources and sink sensor nodes.  

The model used for energy consumption in this research differentiates between two propagation 

environments for signal: free-space and multipath fading. Equation (3) defines the total energy 

𝐸𝑟𝑐  (𝑚, 𝑑) required to send a data packet of size 𝑚 bits over a distance 𝑑. When the distance of 

the transmission is under a critical level 𝑑 𝑡 , the free-space model is relevant, and the consumption 

of energy grows quadratically with the distance. When 𝑑 < 𝑑 𝑡 , the free-space model applies, and 

energy consumption scales quadratically with distance. Conversely, for 𝑑 ≥ 𝑑 𝑡 , the multipath 

fading model is invoked, where energy consumption increases to the fourth power of the distance. 

This two-tier formulation provides a more accurate representation of real-world transmission 

losses in heterogeneous wireless environments. The energy model as follows: 

 

           

𝐸𝑟𝑐(𝑚, 𝑑) = 𝑓(𝑥) = {
𝑚𝐸𝑒𝑐 + 𝑚𝑓𝑠𝑑 ∗ 𝑑2,   𝑖𝑓 (𝑑 < 𝑑𝑡)

𝑚𝐸𝑒𝑐 + 𝑚𝑡𝑚𝑝 ∗ 𝑑4,   𝑖𝑓 (𝑑 ≥ 𝑑 𝑡 )

  (3) 

 

where, 𝐸𝑒𝑐 denotes per-bit power consumption in the electronic circuitry, 𝑓𝑠𝑑  is the free-

space path loss amplifier coefficient, and 𝑡𝑚𝑝 is the amplifier coefficient during multipath fading. 

To find the crossover between the two regimes of propagation, Equation (4) finds the 𝑑 𝑡  

threshold distance as,  

Threshold parameter, 

𝑑𝑡 = √
𝑓𝑠𝑑

𝑡𝑚𝑝

      (4) 

 

The energy consumption of the amplifier in HRFCHE (Amuthan & Arulmurugan, 2021), 

which facilitates long-distance transmission, is measured at 0.0018 pJ per bit per square meter. 

On the other hand, On the other hand, the energy used for the transmission of shorter degrees is 

𝑓𝑠𝑑 ¼ 10=bit=m2. The variables 𝐸𝑒𝑐, m, 𝑓𝑠𝑑 , and 𝑓𝑚𝑝 denote the energy, number of bits of data 

sent, frequency for establishing connection between source and destination, and transmission rate, 
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respectively. In a similar vein, the transfer of data between the source and the sink may occur by 

either single-hop or multi-hop transmission, depending on whether they are within the shared 

communication range. The energy consumption associated with both single and multi-hop data 

transport in this method is comparable to that seen in LEACH. The determination of the threshold 

energy parameter in ECODQC is based on the probe parameters that are encapsulated inside the 

packets exchanged between the source and the sink. Additionally, Equation (5) defines the 

Threshold Energy Parameter (TEP) as 𝐸𝑇𝐸𝑃, which is employed to determine whether a node is 

eligible to serve as a cluster head in the framework of ECODQC. The 𝑇𝐸𝑃 represents the overall 

energy expense of data processing as well as intra-cluster communication overhead. the 

calculation of the threshold energy parameter for each sensor node is performed using equation 

as follow,  

 

𝐸𝑇𝐸𝑃 = 𝑚𝐸𝑒𝑙𝑒𝑐𝑡 + 𝑚(1 𝑐 − ⁄ 1 )𝐸𝑑𝑟𝑎𝑖𝑛
      (5) 

         

 Where  𝑚 is the size of the data message (in bits), 𝐸𝑒𝑙𝑒𝑐𝑡 is the energy consumed 

by the node's electronics per bit for transmission, 𝐶 represents the number of nodes in the 

current cluster, 𝐸𝑑𝑟𝑎𝑖𝑛 
refers to the average energy loss associated with cluster-level 

responsibilities, such as data aggregation and routing coordination. Within the model of 

ECODQC, this equation enables the system to examine if a node possesses sufficient 

residual energy to assume more tasks such as acting as a cluster head or a relay node. The 

static energy cost in electronics is covered by the first term, 𝑚𝐸𝑒𝑙𝑒𝑐𝑡  , while the second 

term, 𝑚(
1

𝑐
− 1)𝐸𝑑𝑟𝑎𝑖𝑛 

 , captures the dynamic drain in energy from the structure of the 

cluster, decreasing with larger clusters (as the overhead is distributed over more 

members). 

This threshold is pivotal in facilitating an energy-balanced distribution of roles. 

Through the calculation of whether the given node is at or above 𝑇𝐸𝑃, the technique for 

the ECODQC prevents the allocation of essential roles to nodes with low energy, 

enhancing network stability, lifetime, and robustness against mobility. The equation 

depicts the balance between localized communication requirements and overall system 

fairness of energy 

4. Proposed ECODQC Model 

This method is developed to diminish the latency and energy utilization of the HWSN-

based IoT environment. The major category of this method is the clustering process, privacy-

based communication model, query-driven model, clustering through the query-driven model, 

and finally enhanced CSMA/CA protocol. The workflow of the proposed ECODQC model is 

illustrated in Fig. 3. 
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Fig. 3. ECODQC system model 

 

 

4.1 Clustering Process 

The foundation of the multi-hop route selection method lies in the cluster and layer stages. 

The first stage of this strategy involves the process of clustering, which is a significant field of 

study within WSN. The CH node identification in this study is done using a clustering technique 

based on energy distribution. Subsequently, the cluster creation process will be completed by the 

CH nodes, as previously outlined in our prior research. The network displays a non-uniform 

spatial distribution of nodes and varies energy consumption based on the locations of the nodes. 

Consequently, the distribution of the remaining energy across the network is unequal. 

 It is obviously good to select CH nodes from areas of high-energy distribution, primarily 

due to network coverage Strategically locating nodes within the region of high-energy distribution 

has a significant positive effect on network performance. Based on the above-stated study, we 

propose incorporating the concept of energy core into WSN. The selection of CH node involves 

determining the energy concentration area within the network.  Thus, the entire cluster can be 

formed after selecting the location of CH node. The CH nodes disseminate a specific subset of 

information concerning the cluster to the network. The information provided merely comprises 

geographical dimensions, coordinates, and the ID of the CH node. The membership of the cluster 

determination for the remaining nodes in the network is based on the assessment of the strength 

of the received broadcast information. Simultaneously, a reply is forwarded to the CH node.  The 

message includes not just node's remaining energy information and distance information to CH. 

This communication is meant for the process's next step. A random number is further sent by each 

sensor node and CH to ensure safe transfer of data across the cluster. 

The CH node stores the values of r N i and ID N i. It should be noted that the node chooses 

of r N i on its own and then sends the result to the CH node before the data connection. The 

purpose of this study is to collect sensor data stored within the network area's target node. The 

relay nodes within the multi-hop route blend the data packet originating from the source node 

with a randomly generated number, and then broadcast this combined information to the 

succeeding node in the sequence. After the relay node transmits the data packet to the next relay 

node, the packet is removed from the relay nodes.  
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The header of message serves as a unique identification for the message, allowing for the 

categorization and classification of the information received. This study primarily encompasses 

three distinct categories of information: broadcast, feedback, and data information. The 

information of the header refers to the distinctive identifier of a node inside a network, often 

referred to as the node's ID. The variability of this information differs between nodes within the 

cluster. The next two pieces of information pertain to the node's position inside the network, as 

determined by the coordinate system. Reducing the computational load on the CH node is the 

information tail's ultimate goal. The previously sent broadcast information contains the positional 

data of the CH node. As a result, by analyzing the broadcast data that each CH node sends out, 

nearby nodes can calculate the distance to the CH node. The CH node is the only location where 

distance data is collected, and it acts as the only point of reference for the method's subsequent 

step. Every node is allocated to a particular local cluster after the cluster construction and CH 

node selection processes are finished. This method has the advantage of improving local node 

management efficiency. 

The privacy of the node is rather great since the whole cluster is seen as a single node from 

the perspective of the base station. Indeed, apart from the role elucidated in the preceding section, 

the role of the CH node encompasses other functions. The main goal of this section is to establish 

an appropriate layer by using the cluster's feedback information and accounting for the energy 

and distance information at the CH node. The fact that there are differences in the intervals 

between each layer is worth mentioning. The cluster head node first measures the distance 

between it and the farthest node in its immediate vicinity. It then sets this value as the cluster's 

maximum distance. Subsequently, the calculation of the cluster's node count performed based on 

the identification number. Ultimately, the CH node begins to arrange itself in a hierarchical 

manner based on the quantity of nodes and the maximum distance value. The selection of the CH 

node is based on the concentration point of the network energy. It is evident that the quantity of 

nodes exhibiting equidistant proximity to the base station is much more as compared to the CH 

node. 

 

4.2 Privacy-Based Communication Model 

Following this is the transmission of data. The consideration of the path selection issue is 

crucial in the context of data transmission. The con. The active cluster path selection technique is 

used in this research. A node looks for a neighboring node that is within one hop's transmission 

range before sending data packets to the CH node. All nodes within this range have their layer 

IDs and corresponding distances collected by the source node. The nodes begin the process of 

choosing the best relay nodes after all required preparations are finished.  

The chosen relay node shares a common feature, which is that its ID number is either less 

than or equal to the ID number of the source node. The packet of data is sent to the CH node 

during the relay transmission process. There are some rules that should be followed when 

choosing relay nodes. Let's move on to introducing them in the next section: 

Only the nodes that have the same ID layer as the source node exist if they are in the 

communication range of the source node, and the candidate node is chosen as the relay node. Only 

if the relay nodes in the subsequent layer have yet to be discovered are the data packets sent back 

to the source node and queued. The subsequent sub-cluster is to reach after the queued data has 

been delivered. The process of selecting the path is complete when the CH node is one hop close 

to the relay node's transmission range. Direct transmission to the CH node is provided by the relay 

nodes. Based on the temporal and spatial monitoring data, a correlation has been observed. 

Consequently, a linear fitting approach is used, using a time series data compression technique, 

to achieve data compression and minimize the amount of data packets transferred inside the 

network.  

i. In scenarios where the relay node candidate of the source node has numerous layers, it is 

desirable to prefer the choice of nodes in the innermost layer.  

ii. In scenarios where all nodes are located in the next layer, it is absolutely necessary to give 

priority to the choice of nodes that are close to the source node. 
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Once the multi-hop route has been established, the source nodes start the transmission of 

the desired data to the CH node using the designated communication channel. It should be noted 

that the channels connecting the nodes are accessible to potential attackers. The anonymity of the 

source data is safeguarded by integrating the actual data with a randomly generated number during 

the first phase of the system. Moreover, the ECODQC supports relay node selection with a 

lightweight privacy-enhancing mechanism that injects random number encoding into the payload 

while forwarding in multi-hop mode. Dynamic relay path selection coupled with randomized 

encoding diminishes the probability of repeating patterns in transmissions, with little chance of 

traffic analysis or passive listening in return. ECODQC does not follow the fixed-path relay 

approach, instead dynamically updating the path of packets as well as the embedded identifiers, 

leaving it more difficult for adversaries to deduce the relationship between the sources and 

destinations or individual identities of the nodes. 

 

4.3 Query-Driven Model 

The Quasi-Oppositional Butterfly Optimization Algorithm (QOBOA) incorporates 

opposition-based learning in order to improve the algorithm's performance in terms of 

convergence and optimality of the solution. In order to obtain a solution of superior quality, a 

population diametrically opposed to the current population is created and simultaneously 

analyzed. A value chosen at random between the variable's mirror point and the search space's 

midpoint is the query-driven value of a potential solution. The process that follows yields the 

quasi-opposite population. 

   𝑥𝑖,𝑗
𝑞

= 𝑟𝑎𝑛𝑑(𝑎, 𝑏)      (6) 

                                     
𝑎 =

𝑥𝑖𝑗
𝑚𝑖𝑛+𝑥𝑖𝑗

𝑚𝑎𝑥

2

        (7) 

      𝑏 = 𝑥𝑖𝑗
𝑚𝑖𝑛 + 𝑥𝑖𝑗

𝑚𝑎𝑥 − 𝑥𝑖𝑗
                (8) 

 

Where 𝑥𝑖𝑗
 is the 𝑗𝑡ℎ  variable of 𝑖𝑡ℎ  candidate solution 𝑥𝑖𝑗

𝑚𝑖𝑛 , 𝑥𝑖𝑗
𝑚𝑎𝑥  are the minimum and 

maximum of 𝑥𝑖𝑗
 , 𝑥𝑖,𝑗

𝑞  is quasi opposite value of 𝑥𝑖𝑗
 . 

The integration of the Butterfly Optimization Algorithm into ECODQC enables global 

and more robust search in the clustering solution space, minimizing the chances of 

converging prematurely towards the local optima. The opposition-based learning strategy 

compares the existing candidate with its quasi-opposite, thereby supporting fast 

convergence in the initial iterations and also preserving diversity in the population. This 

behavior is particularly useful in dynamic WSN scenarios wherein the topology and query 

distribution frequently alter. Although QOBOA imposes a marginal computational 

overhead in the form of increased numbers of fitness evaluations, the overhead occurs 

only in the sink node, in which the resource limitation is less severe than in the sensor 

nodes. These acceptable response times are sustained by the use of population size 

limitation, termination by fitness threshold, and adaptive parameter adjustment. As 

illustrated in the experiments carried out, the increased computational cost is justified in 

terms of considerable improvement in the quality of the obtained clusters, energy 

balancing, and efficiency in delivering the data, proving it suitable for real-time, query-

aware optimization in resource-constrained WSN scenarios. 
 

4.4 Clustering Through Query-Driven Model 

The algorithm functioning relies on a centrally managed Quasi Oppositional Butterfly 

Optimization Algorithm (QOBOA) mechanism, which is implemented either at the sink or the 

BS. The BS serves as a high-energy node in this context. The suggested clustering algorithm, 

based on QOBOA, functions in a series of rounds. Each round starts with a setup phase, during 
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which the construction of clusters takes place. The steady-state phase is characterized by the use 

of identical procedures as outlined in reference. Upon the beginning of each phase, every node 

transmits data on the present energy status and the positions of the base stations. The nodes with 

energy levels above the mean remain CHs for the duration of this round in order to guarantee the 

selection of CHs with an appropriate energy level. The proposed quasi opposition-based BOA 

clustering technique, which has the potential to minimize the fitness function as outlined below, 

is used by the next Base Station to select the best cluster heads. 

 

Fitness Function = 𝜀1 × 𝑓1 + 𝜀2 × 𝑓2 + 𝜀3 × 𝑓3
         (9) 

Where 𝜀1 + 𝜀2 + 𝜀3
=1 and 0<𝜀1, 𝜀2, 𝜀3 < 1 

   𝑓1 = ∑
1

𝑙𝑗
(∑ 𝑑𝑖𝑠𝑡(𝑆𝑗 , 𝐶𝐻𝑅)

𝑙𝑗

𝑗=1
)𝑚

𝑅=1        (10) 

 

   𝑓2 =
1

∑ 𝐸(𝐶𝐻𝑗)𝑚
𝑓=1

        (11) 

   𝑓3 =
∑ 𝑑𝑖𝑠𝑡(𝐶𝐻𝑗,𝐵𝑆)𝑚

𝑗=1

𝑁
       (12) 

 

 

The variable f1 represents the intra-cluster nodal distance between nodes and their 

respective Cluster Heads, whereas lj represents the set of nodes that belong to Cluster CHk. The 

function f2 is defined as the reciprocal of the total power of the cluster chiefs as well as their 

candidates within the current round. The function f3 denotes the ratio between the average sink 

distance and the total number of nodes present in the network. The user defines the values of the 

weigh 𝜀1, 𝜀2, 𝜀3 , which are used for the purpose of managing three goal functions. The 

aforementioned fitness function aims to minimize the intra-cluster distance between nodes and 

their respective cluster heads, quantified by f1. This optimization contributes to enhancing the 

energy efficiency of the network, as represented by f2, while also minimizing the average sink 

distance, f3. The following is a list of the stages involved in the QOBOA-based clustering method.  

 

Step 1 : Initialization of network parameters such as the quantity and size of nodes within a 

sensor network. 

Step 2 : The initialization of energy parameters consists of the initial energy Eo of the sensing 

nodes, the energy required to operate the transmitter and receiver Eelec ,and the aggregation and 

amplification of energy 𝜀𝑓𝑠 , 𝜀𝑚𝑝. 

Step 3 : Initialization of the population size, maximum iterations, sensor modality c, switch 

probability p, and power exponent a for the optimization. 

Step 4  : Disperse the sensor nodes in the sensing field at random.  

Step 5 : The initial population of CHs is created by making a selection among the network's 

existing nodes 

Step 6 : Every node's fitness is assessed after the first population is generated in order to provide 

excellent results since the best nodes are selected to be the cluster heads. Equations (10) to (12) 

illustrate the distance between the related nodes of the CH and energy parameters that are included 

in the fitness function.  

Step 7 : Determining the optimal option for the population.  

Step 8 : Employ global and local search strategies of quasi-oppositional based butterfly 

optimization, using switching probability across populations to update the candidate solutions in 

case the stopping conditions are not met. Once more, calculate each solution's fitness. 

Step 9 : Update the current population with the assistance of the new generation if its fitness is 

lower than that of the initial population; if not, it must be maintained at the same level as the 

previous population until the completion of the subsequent iteration. 
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Step 10 : The best nodes are chosen as CHs from the population relevant to that round if the 

stopping criteria are satisfied. 

Step 11 : Based on the distance between the sensor node and the CH, a node is assigned to each 

CH after they have been selected.  

Step 12 : Following this, communication between the nodes and the CHs is started. The last 

correspondence between the CH and the BS has been completed.  

Step 13 : Finally, the parameters and their ultimate computation are then finished. 

 

The basis of selecting high-energy density zones as a criterion for selecting CHs 

stems from maximizing the stability and longevity of the network. Nodes in high-residual 

energy regions are statistically less probable to experience premature depletion, 

minimizing the occurrence of CH re-election and its corresponding overhead. 

Furthermore, choosing CHs in energy-concentrated regions will optimize the chances of 

CH formation with balanced loads of communications, preventing the localized depletion 

in the lifetime of a single node. This also maximizes the dependability of inter-cluster 

communication since CHs with larger energy resources are in a good position to perform 

data aggregation and forwarding without affecting the network lifetime. Dynamically 

assessing the energy's spatial distribution, ECODQCs ensure CH selection remains 

adaptive according to real-time scenarios and evades the drawbacks of fixed or proximity-

dependent methods prevalent in past techniques. 
 

4.5 Enhanced CSMA/CA Protocol 

To enhance the performance of CSMA/CA, this paper introduces a modified version of 

CSMA/CA. This update effectively addresses the issue of access collisions due to the limited 

bandwidth efficiency, resulting in a reduction in the average delay for packet delivery. The 

proposed approach employs a Main Back-off (MB) and Secondary Backoff (SB) technique to 

introduce variable delays in the nodes for an irregular number of backoff periods. In the standard 

CSMA/CA, the maximum delay value, referred to as Backoff, is provided as: 

 

   Backoff = 2𝑚𝑎𝑐𝑚𝑎𝑥𝐵𝐸         (13) 

                             

In the modified unslotted CSMA/CA protocol, nodes choose MB and SB values in a 

random manner. The MB value is selected from between the ranges of 10% to 50% of the Backoff 

duration, while the SB value represents the residual delay after the Backoff period. The 

computation of MB and SB is as follows: 

 

     MB = (Backoff * BP)/100       (14) 

     SB = Backoff – MB        (15) 

Where the variable BP represents the Backoff Percentage, which denotes the actual 

percentage value of the backoff delay. The possible values for BP are 10, 20, 30, 40, and 50. When 

a node has a packet to transmit, it sets the initial values of the factors as follows: NB = 0 and 

Backoff = 2
𝑚𝑎𝑐𝑚𝑎𝑥𝐵𝐸 . The node selects the BP in a random manner. The node thereafter enters 

a state of waiting, during which it undergoes an irregular number of backoff periods. These 

backoff periods are picked from a range of values (0, MB), as determined by the calculation 

described in (1). When the node has finished calculating the random value of the MB delay, it 

performs the first Clear Channel Assessment, abbreviated as CCA1, to determine the channel 

state. If the channel is found to be devoid of any other transmissions, the node proceeds to transmit 

its packet to the coordinator. In accordance with (14), if the node does not get a response, it 

proceeds to wait for a variable number of back-off periods, denoted by SB, within the range of 

(0, SB). After the arbitrary length of SB delay has been completed, the node performs the second 
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Clear Channel Assessment, designated as CCA2, for data transmission. In the event that the 

channel is determined to be unoccupied, the node proceeds to send its packet to the coordinator. 

In the event that the node is already engaged, it proceeds to repeat the backoff procedure by 

incrementing the NB value by one. If the value of NB reaches its maximum limit beyond the 

threshold of macMaxCSMABackoffs, the transmission is stopped due to a failure in channel 

access. 

The use of arbitrary selection of MB and SB values significantly decreases the probability 

of several nodes selecting the same irregular MB value, as well as the SB value. Consequently, 

this reduction in the risk of access collision greatly minimizes the occurrence of access conflicts. 

Based on the prescribed methodology, the nodes perform CCA at the primary back-off level 

without the need to pause until the completion of the full irregular back-off delay. Hence, the 

implementation of this CSMA/CA protocol results in a decrease in the transmission delay of 

packets. 

 

5. Simulation Environments 

The network performance of the ECODQC approach has been evaluated through an 

extensive implementation using the NS2 software. The performance of ECODQC is calculated in 

the presence of an enhanced CSMA/CA protocol and an ODQC clustering protocol. At the end 

of this simulation, the results are compared with baseline works, such as the Quasi Oppositional 

Butterfly Optimization Algorithm (QOBOA) (Karunanithy & Velusamy, 2020), the Energy-

efficient Query-Driven Clustering protocol (EQDCP) (Gong et al., 2022), and the Energy 

Optimization Routing using Improved Artificial Bee Colony algorithm (EORIAB) (Santhosh & 

Prasad, 2023). The network coverage dimension is 1000m*1000m where the nodes are moving 

at a speed of 5Km/hr to 50Km/hr. The other essential parameters involved in this research are 

given in Table 2. 

Table 2 - Parameter table 

Matrices Values 

Simulator NS2  

Time 200 ms 

No of Nodes Hundred Nodes 

CH Nodes Ten Nodes 

CM Nodes Ninety Nodes 

CH Sensing Radius 50m 

CM Sensing Radius 10m 

CH Initial Power 100 Joules 

CM Initial Power 10 Joules 

Antenna Type Omni-directional  

UMTS Threshold -94 dBm 

Queue Length 50 

Node Speed 5Km/hr to 50Km/hr 

Power for Data Sensing 0.100 Joules 

Power for Data Transmitting 0.500 Joules 

Power for Data Receiving 0.050 Joules 

Idle Power 0.040 Joules 

Data Rate 256 to 512 Kbps  

DATA Traffic Constant Bit Rate 
 

5.1 Results Concerned with Number of Nodes 

In this section, the simulation outcomes are evaluated in terms of the number of nodes, and 

the results are explained graphically for methods such as QOBOA, EQDCP, EORIAB, and the 

Proposed ECODQC. Performance is evaluated using parameters such as energy efficiency, CM 

efficiency, success rate in data, nodes computational delay, and nodes throughput level. 

 

5.1.1. Energy Efficiency Calculation 

In the case of HWSN, the energy level of each sensor is varied according to its utility. The 

efficiency of the sensors is analyzed in the localization area. In general, the static nodes consume 
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more power than the heterogeneous nodes; hence, the static nodes are assigned more loads. At the 

time of simulation, the initial energy allocated to each node is 10 joules. Fig. 4 presents the graph 

of energy efficiency, which demonstrates that the proposed ECODQC achieves better efficiency 

than the baseline methods, such as QOBOA, EQDCP, and EORIAB. 

 

 

Fig.4. Energy efficiency calculation 

 

5.1.2. CH Efficiency Calculation 

The energy level of CH varies from one another according to its communication process, 

but the primary goal of this research is to increase the lifetime of CH. From the final observation, 

as shown in Fig. 5, the performance of the proposed ECODQC is superior to that of baseline 

works, such as QOBOA, EQDCP, and EORIAB. 

 

 

Fig. 5. CH efficiency calculation 

 

 

 

5.1.3. CM Efficiency Calculation 

The energy level of the nodes varies according to their communication, and attaining 

maximum efficiency is the primary goal of the proposed ECODQC. From Fig. 6, it is shown that 

the cluster member efficiency obtained by the ECODQC approach is significantly better than that 

of the baseline works. 
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Fig.6. CH efficiency calculation 

 

5.1.4. Rate (DSR) Calculation 

The data success rate is defined as the ratio of the total sum of the packets that were 

successfully communicated and received to the total sum of the packets that were generated from 

the source, which is termed the data success rate. Fig. 7 implies the graph of DSR of the proposed 

ECODQC and baseline techniques such as QOBOA, EQDCP, and EORIAB. This analysis proves 

the superiority of ECODQC over the others for 100ms of simulation time, respectively.  

   

 

Fig 7. Data success rate calculation 

 

5.1.5. Nodes Throughput Level Calculation 

The throughput level of the network is the measurement of the total volume of data 

effectively generated until the end of the simulation run time. The sensors are heterogeneous, and 

at some time, they may move out of the coverage area and reach the neighboring cluster. As a 

result, the data transmitted by a particular sensor can be received by more than one CH. At the 

final stage, all the information is forwarded to the destination. Fig. 8 illustrates the throughput 

calculation of the proposed ECODQC and the baseline works. From the results obtained, it is 

proven that the throughput level of this method is higher than that of the baseline works.  
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Fig. 8. Throughput level calculation 

 

5.1.6. Nodes Computational Delay Calculation 

It is the measure of the time duration utilized for any packets to reach their targeted 

destination from the transmitted source. The sensed data gets transmitted to the CH and from there 

to the base station. Fig. 9 shows the end-to-end delay calculation of the proposed ECODQC, and 

it produced a lower delay than the baseline works QOBOA, EQDCP, and EORIAB. 

 

 

Fig. 9. End to end delay calculation 

 

5.2. Results and Discussion Concerned with Number of Nodes 

In this section, the simulation outcomes are described regarding the number of nodes in 

detail to analyze the performances of the previously proposed methods and the proposed scheme. 

The parameters considered in the measurement of the performances are energy efficiency, CH 

efficiency, CM efficiency, data success rate, nodes computational delay, and nodes throughput 

level. The simulation results presented in Table 3 and Table 4 validate the proposed model's 

ECODQC superiority over the comparative techniques QOBOA, EQDCP, and EORIAB in all the 

parameters considered. In particular, ECODQC achieves an energy efficiency of 432.23 Joules at 

100 nodes, which is 135.49 Joules over EORIAB. This improvement is attributed to ECODQC’s 

adaptive CH selection mechanism, which considers both residual energy and spatial correlation 

unlike QOBOA static selection or EQDCP threshold-dependent clustering. However, in terms of 

CH efficiency, ECODQC achieved a leading value of 89.34%, surpassing QOBOA (81.25%), 



Jubair et al …                                 Vol 7(1) 2025: 59-83 

76 

 

EQDCP (85.24%), and EORIAB (87.13%). Additionally, the ECODQC cluster member 

efficiency achieves 98.47%, outperforming EORIAB (93.74%) and EQDCP (91.28%).  

This fact to its capacity to ensure intra-cluster communication under steady conditions 

despite increasing node density, due to its hierarchical clustering at the layer level and adaptive 

backoff mechanism at the MAC level. Those results reinforce the model presented in [40] that 

optimization algorithms enhance clustering robustness, and further elaborate by proving that 

combining MAC-layer tuning (as with ECODQC) achieves synergic QoS improvements. 

Additionally, the data success rate (DSR) is significantly enhanced to 97.55%, which is a vital 

factor for applications in real-time IoT. The results show that the reduction of computational delay 

is 85.23 ms in the case of ECODQC compared to 125.47 ms for EORIAB and 256.17 ms for 

QOBOA. Finally, in terms of node throughput, ECODQC exhibited the highest performance, 

achieving a throughput of 813.77 Kbps. The dramatic reduction is an affirmation that MAC and 

clustering co-optimization (not present in earlier approaches) directly affects latency 

 
Table 3 - Measurement of the parameters such as energy efficiency, CH efficiency, and CM efficiency 

concerned with number of nodes 
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 Energy efficiency (Joules) Cluster head efficiency (%) Cluster member efficiency (%) 

10 35.17 59.22 81.28 124.37 80.14 83.16 84.27 85.29 85.29 88.74 89.55 93.54 

20 54.21 70.45 99.63 135.81 80.24 83.49 84.49 85.54 85.56 88.94 89.78 93.56 

30 72.58 97.52 127.82 149.75 80.38 83.68 84.67 85.76 85.84 89.34 89.95 93.85 

40 89.37 124.78 147.85 172.36 80.49 83.82 84.96 85.92 86.24 89.75 90.18 94.28 

50 104.67 135.69 154.96 195.69 80.56 84.16 85.26 86.19 86.58 89.95 90.47 94.67 

60 124.65 154.32 187.52 247.14 80.64 84.45 85.52 86.52 86.79 90.26 90.68 94.83 

70 138.97 179.64 207.89 285.32 80.79 84.69 85.74 86.79 87.65 90.48 91.48 95.48 

80 158.63 214.79 257.84 327.96 80.87 84.87 86.46 87.64 87.92 90.67 91.79 96.58 

90 171.92 235.97 274.89 374.81 80.96 85.01 86.79 88.56 88.56 90.86 92.67 97.73 

100 185.24 265.16 296.74 432.23 81.25 85.24 87.13 89.34 89.24 91.28 93.74 98.47 

 

 
Table 4 - Measurement of the parameters such as data success rate, nodes computational delay, and nodes 

throughput level concerned with the number of nodes 
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 Data success rate (%) Nodes computation delay (ms) Nodes throughput level (Kbps) 

10 76.23 81.49 86.28 91.24 35.14 29.79 21.47 15.29 55.17 96.24 121.74 256.79 

20 76.58 81.64 86.67 91.64 52.31 35.65 26.53 20.98 74.15 149.32 168.32 285.32 

30 76.79 81.79 86.94 92.46 76.84 46.32 35.69 24.68 86.34 184.95 204.89 305.89 

40 76.81 81.93 87.19 92.79 94.58 58.89 49.65 32.59 105.97 227.89 256.94 376.25 

50 77.24 82.49 87.54 93.18 102.98 75.64 64.25 36.49 138.94 256.94 284.61 435.64 

60 77.48 82.69 87.62 93.85 125.78 92.56 73.56 43.87 154.23 287.64 308.47 504.87 

70 77.71 83.17 88.23 94.37 156.32 106.52 81.25 56.29 179.68 317.84 336.94 596.32 

80 78.34 83.65 88.49 95.46 174.58 125.98 93.58 63.25 195.63 349.16 384.56 657.94 

90 78.68 84.06 88.74 96.75 224.85 154.85 105.63 74.56 214.56 374.82 405.63 723.65 

100 79.17 84.76 89.11 97.55 256.17 179.34 125.47 85.23 235.17 396.17 458.72 813.77 

 

5.3. Results Concerned with Varying Speed 

The implementation outcomes are measured concerning varying speeds from 5Km/Hr to 

50Km/Hr, and the results are given for methods like QOBOA, EQDCP, EORIAB, and the 
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Proposed ECODQC. The parameters used in performance evaluation are data success rate, data 

failure rate, energy efficiency, and energy consumption. 

 

5.3.1 Data Success Rate (DSR) Calculation 

The Fig. 10 implies the graph of DSR with respect to varying speeds from 5Km/Hr to 

50Km/Hr, and it is proven here that the ECODQC achieves better performance than the earlier 

approaches, such as QOBOA, EQDCP, and EORIAB. In general, an increase in speed decreases 

the success data rate of the nodes; however, the variation is comparatively very low and negligible 

for the proposed ECODQC. 

 

Fig. 10. Data success rate calculation 

 

5.3.2. Data Failure Rate (DFR) Calculation 

It is the measure of the total number of packets that are lost at the time of communication 

among the HWSN network. The malfunctions of faulty nodes are significantly reduced in the 

proposed ECODQC; as a result, the failure rate obtained by this method is lower than that of other 

works, as illustrated in Fig. 11. 

 

 

Fig. 11. Data failure rate calculation 

 

5.3.3. Energy Efficiency Calculation 

The figure of energy efficiency calculation related to the varying speed from 5Km/Hr to 

50Km/Hr, and from that, as shown in Fig. 12, it is confirmed that ECODQC produced higher 

efficiency than the earlier approaches like QOBOA, EQDCP, and EORIAB. 
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Fig. 12. Energy efficiency calculation 

 

5.3.4. Energy Consumption Calculation 

The energy consumption of the methods considered in this research concerning varying 

speed from 5Km/Hr to 50Km/Hr, and it is shown that the ECODQC produced lower power 

consumption than earlier approaches like QOBOA, EQDCP, and EORIAB as shown in Fig. 13. 

 

Fig. 13. Energy consumption calculation 

 

5.4. Results and Discussion Concerned with Varying Speed 

In this section, the simulation results are discussed related to the varying speed in an 

elaborate way to analysis the performance. The parameters used in performance evaluation are 

data success rate, data failure rate, energy efficiency, and energy consumption. The measurements 

of the calculated parameters are shown in Tables 5 and 6. In all the major performance metrics, 

ECODQC performed consistently above the baseline models. ECODQC's performance remained 

constant with a 6.28% data failure, and It had a 93.16 % data success rate, The ECODQC system 

recorded the highest energy efficiency of 496.28 Joules, with 54.28 Joules of power consumption 

compared with baselines. All these findings confirm the scalability, stability, and power-

conscious design principles of ECODQC for dynamic WSN. In order to validate the statistical 

significance of the presented results, every scenario was simulated 20 times with varying random 

seeds, 95% confidence intervals for which were calculated. Paired t-tests also evaluated the 

performances of the other protocols compared to ECODQC and indicated statistically significant 

improvements in all the metrics (p < 0.01). Furthermore, the two-layer structure of ECODQC 

MAC-layer dual back-off collision control integrated with query-driven adaptive clustering is 
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beneficial in the presence of heterogeneity and mobility. The combination improves long-duration 

network stability, reduces packet loss, and enhances responsiveness. 
 

Table 5 - Measurement of the parameters such as data success rate and data failure rate concerned with 

varying speed 
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 Data Failure Rate (%) Data Success Rate (%) 

5 11.47 7.18 5.94 3.24 79.33 85.16 89.14 96.14 

10 11.65 7.64 6.24 4.25 79.15 84.97 88.97 95.68 

15 11.82 8.24 6.94 4.98 78.64 84.76 88.64 95.46 

20 12.36 8.56 7.56 5.05 78.28 84.52 88.32 95.12 

25 12.74 9.45 7.84 5.26 77.82 84.05 87.56 94.89 

30 13.56 9.94 8.27 5.49 77.58 83.94 87.25 94.61 

35 13.89 10.28 8.67 5.68 77.34 83.54 86.74 94.47 

40 14.15 11.56 9.56 5.89 77.18 82.81 86.31 94.21 

45 14.85 12.89 10.48 6.05 77 82.45 86.05 94.06 

50 15.24 13.74 11.71 6.28 76.14 81.49 85.28 93.16 

 

Table 6 - Measurement of the parameters such as energy efficiency and energy consumption concerned 

with varying speed 
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 Energy efficiency (Joules) Energy consumption (Joules) 

5 252.17 296.85 384.27 512.89 125.96 101.28 85.79 35.47 

10 250.14 293.48 383.24 510.26 130.24 102.56 86.25 38.56 

15 247.23 289.67 382.59 508.95 132.85 104.89 88.56 42.32 

20 236.85 284.63 380.47 506.78 136.97 106.75 90.67 44.85 

25 229.64 280.29 378.69 504.89 139.52 108.47 92.56 46.97 

30 218.94 276.93 373.24 502.63 142.56 110.26 94.86 48.29 

35 213.58 270.31 367.25 500.28 144.57 115.86 95.64 50.62 

40 209.56 264.89 361.59 497.64 148.65 120.64 95.85 51.62 

45 205.24 260.34 355.61 497.25 150.28 124.69 96.05 52.87 
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To ensure the performance gain observed in the scenarios is highly reliable and 

generalizable, every simulation scenario was run 20 times with independent random. For every 

measure of performance, the mean was computed, as well as the standard deviation, with the 

construction of 95% confidence intervals. To further compare ECODQC with every baseline 

model (QOBOA, EQDCP, and EORIAB), a paired t-test was performed. Findings showed 

statistically significant gains in energy efficiency, data success rate, and throughput (p < 0.01), 

proving the consistency of the performance gains of ECODQC and the fact that the gains are not 

due to random change. This supports the consistency of the proposed protocol under different 

operational conditions. 

 

5. Conclusion  

The ECODQC model has been introduced to achieve effective communication in an 

HWSN-based IoT environment by reducing delay and power utilization of nodes during data 

transmission. The main goals of this method is to reducing network collisions and latency through 

a dual-backoff CSMA/CA mechanism; enabling energy-efficient clustering via a query-driven 

strategy; enhancing QoS and data success rate. The novelty of the work focus in its CH selection 

process and the privacy-based communication model, which enhances data gathering and 

provides effective optimization during communication among the sensors. Extensive simulations 

of the proposed ECODQC were conducted using the NS2 simulator, demonstrating that it offers 

maximum efficiency and lifetime compared with baseline methods like QOBOA, EQDCP, and 

EORIAB. Both CH and CM node efficiency are enhanced, increasing the overall efficiency of the 

HWSN network. ECODQC demonstrates strong potential for real-world deployment toward 

various application domains. In smart agriculture, it supports efficient energy usage and long-

range communication, while in industrial IoT, it meets the demands for low latency and reliable 

data delivery. The model also holds promise for smart city infrastructures, environmental 

monitoring, and disaster response systems. In future work, this proposed ECODQC will be 

implemented in a real-time test bed with the required hardware. Additionally, the integration of 

trust management mechanisms and lightweight cryptographic modules will be explored to 

enhance security and resilience against adversarial threats. 
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