Finite Element Analysis of Miniplate for Post-Fracture Finger Rehabilitation Device

  • Nanang Qosim Politeknik Negeri Malang
  • Ratna Monasari Politeknik Negeri Malang
  • Zakki F. Emzain Politeknik Negeri Malang
  • Lutfi Hakim Politeknik Negeri Banyuwangi
  • Ali Sai’in Politeknik Negeri Semarang
Keywords: miniplate; implant; finite elemen method; fracture; finger; titanium.


Miniplate plays an important role as one of the implant components used as a rehabilitation device for a post-fracture finger. In this study, an analysis was carried out to determine the strength of the miniplate design made from Ti-6Al-4V titanium alloy material. Simulation and analysis were carried out using the finite element method. The given input for modeling tensile and bending loads determined von Mises stress, kinetic energy, strain energy, and internal energy. The analysis showed that uneven von Mises stress and strain distribution have occurred. The critical concentration of stresses was located at the center of the miniplate and these values were a lot lower than the yield stress of Ti-6Al-4V.

Author Biographies

Nanang Qosim, Politeknik Negeri Malang

Department of Mechanical Engineering

Ratna Monasari, Politeknik Negeri Malang

Department of Mechanical Engineering

Zakki F. Emzain, Politeknik Negeri Malang

Department of Mechanical Engineering

Lutfi Hakim, Politeknik Negeri Banyuwangi

Department of Electrical Engineering

Ali Sai’in, Politeknik Negeri Semarang

Department of Mechanical Engineering,


Acumed. (2020). Hand Fracture System. Retrieved from

Albogha, M. H., Mori, Y., & Takahashi, I. (2018). Three-dimensional titanium miniplates for fixation of subcondylar mandibular fractures: Comparison of five designs using patient-specific finite element analysis. Journal of Cranio-Maxillofacial Surgery, 46(3), 391-397.

Arbag, H., Korkmaz, H. H., Ozturk, K., & Uyar, Y. (2008). Comparative evaluation of different miniplates for internal fixation of mandible fractures using finite element analysis. Journal of oral and maxillofacial surgery, 66(6), 1225-1232.

Demino, C., Yates, M., & Fowler, J. R. (2019). Surgical management of proximal interphalangeal joint fracture-dislocations: a review of outcomes. Hand, 1558944719873152.

Haughton, D. N., Jordan, D., Malahias, M., Hindocha, S., & Khan, W. (2012). Suppl 1: principles of hand fracture management. The open orthopaedics journal, 6, 43.

Korkmaz, H. H. (2007). Evaluation of different miniplates in fixation of fractured human mandible with the finite element method. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 103(6), e1-e13.

Liu, L., Qu, Y.-y., Jiang, L.-j., Zhou, Q., & Tang, T.-q. (2016). Three-dimensional finite element analysis of a newly designed onplant miniplate anchorage system. Journal of Huazhong University of Science and Technology [Medical Sciences], 36(3), 422-427.

Lögters, T. T., Lee, H. H., Gehrmann, S., Windolf, J., & Kaufmann, R. A. (2018). Proximal phalanx fracture management. Hand, 13(4), 376-383.

Malau, D. P., Utomo, M. S., Annur, D., Asmaria, T., Prabowo, Y., Rahyussalim, A. J., . . . Amal, M. I. (2019, 2019). Finite element analysis of porous stemmed hip prosthesis for children.

Qosim, N., Supriadi, S., Shamsuddin-Saragih, A., & Whulanza, Y. (2018). Surface treatments of ti-alloy based bone implant manufactured by electrical discharge machining. Ingeniería y Universidad, 22(2), 59-70.

Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine: Elsevier.

Ridhi, V. (2012). Use of 3-Dimensional Miniplate in Mandibular Angle Fracture Fixation: A Clinical and Finite Element Study.

Sjamsuhidajat, R., & De Jong, W. (2019). Buku-Ajar Ilmu Bedah.

How to Cite
Qosim, N., Monasari, R., Emzain, Z. F., Hakim, L., & Sai’in, A. (2020). Finite Element Analysis of Miniplate for Post-Fracture Finger Rehabilitation Device . Journal of Applied Engineering and Technological Science (JAETS), 2(1), 21-26.
Abstract viewed = 61 times
PDF downloaded = 41 times