Transport Demand Management Strategy Priority Assessment Based on Expert Judgment
DOI:
https://doi.org/10.37385/jaets.v4i2.1701Keywords:
analytical hierarchy process, judgment, medium city, priority, transportation demand managementAbstract
The main problem of transportation is the very high growth of vehicles causing congestion, resulting in various derivative impacts such as pollution, fuel waste, time value, and other environmental problems. This problem can be solved by Transportation Demand Management (TDM). TDM is a combination of various strategies, which strategy should be chosen whose priority depends on the conditions of each region. This research was conducted in a medium-scale city by determining the priority of TDM using the Analytical Hierarchy Process (AHP) tool. The final result of the judgment is the priority weight of the TDM strategy that will be applied with a CR value of < 10%, namely the pull strategy. This strategy is represented by improving public transport services and infrastructure (especially the integration of public transport services). This study shows that the strategy group with a high AHP Consensus Index (ACI) score means a high consensus among experts.
Downloads
References
Abdulkareem, M. N., Yazid, M. R. M., Alsaidi, L. R., & Borhan, M. N. (2020). Traffic congestion: Shift from private car to public transportation. Civil Engineering Journal (Iran), 6(8), 1547–1554. https://doi.org/10.28991/cej-2020-03091566
AbuLibdeh, A. (2017). Traffic Congestion Pricing: Methodologies and Equity Implications. Urban Transport Systems, January 2017. https://doi.org/10.5772/66569
Ahmed, S., Vedagiri, P., & Krishna Rao, K. V. (2017). Prioritization of pavement maintenance sections using objective based Analytic Hierarchy Process. International Journal of Pavement Research and Technology, 10(2), 158–170. https://doi.org/10.1016/J.IJPRT.2017.01.001
AHP Group Consensus Indicator – how to understand and interpret? – BPMSG. (2020). https://bpmsg.com/ahp-group-consensus-indicator-how-to-understand/
Alkharabsheh, A., Moslem, S., & Duleba, S. (2019). Evaluating passenger demand for development of the urban transport system by an AHP model with the real-world application of Amman. Applied Sciences (Switzerland), 9(22). https://doi.org/10.3390/app9224759
AlKheder, S. (2021). Promoting public transport as a strategy to reduce GHG emissions from private vehicles in Kuwait. Environmental Challenges, 3(March), 100075. https://doi.org/10.1016/j.envc.2021.100075
Anggarani, D., Rahardjo, M., & Nurjazuli, N. (2016). Hubungan Kepadatan Lalu Lintas Dengan Konsentrasi Cohb Pada Masyarakat Berisiko Tinggi Di Sepanjang Jalan Nasional Kota Semarang. Jurnal Kesehatan Masyarakat (e-Journal), 4(2), 139–148.
Baric, D., & Starcevic, M. (2015). Implementation of Analytic Hierarchy Process in Solving Transport Problems. International Journal of the Analytic Hierarchy Process, 7(2). https://doi.org/10.13033/ijahp.v7i2.251
Belwal, R., & Belwal, S. (2010). Public Transportation Services in Oman: A Study of Public Perceptions. Journal of Public Transportation, 13(4), 1–21. https://doi.org/10.5038/2375-0901.13.4.1
Beria, P., Maltese, I., & Mariotti, I. (2012). Multicriteria versus Cost Benefit Analysis: A comparative perspective in the assessment of sustainable mobility. European Transport Research Review, 4(3), 137–152. https://doi.org/10.1007/s12544-012-0074-9
BPS Provinsi D.I. Yogyakarta. (2020). https://yogyakarta.bps.go.id/indicator/12/133/1/jumlah-penduduk-menurut-kabupaten-kota-di-d-i-yogyakarta-.html
Broaddus, A., Litman, T., & Menon, G. (2009). Transportation Demand Management: Training Document. Transportation in the New Millenium, 0(0), 1–118.
Bylinko, L. (2020). The practical importance of transport demand management policy. Transport Problems, 15(4), 191–201. https://doi.org/10.21307/TP-2020-059
Chapter 32: Transportation Demand Management (TDM). (2010). https://brtguide.itdp.org/branch/master/guide/transportation-demand-management-tdm/
CIE. (2006). Business costs of traffic congestion. Context, August.
Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle Ownership and Income Growth, World wide: 1960--2030. The Energy Journal, 28(4), 1–32.
De Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016
Eriksson, L., Garvill, J., & Nordlund, A. M. (2008). Acceptability of single and combined transport policy measures: The importance of environmental and policy specific beliefs. Transportation Research Part A: Policy and Practice, 42(8), 1117–1128. https://doi.org/10.1016/j.tra.2008.03.006
Eriksson, L., Nordlund, A. M., & Garvill, J. (2010). Expected car use reduction in response to structural travel demand management measures. Transportation Research Part F: Traffic Psychology and Behaviour, 13(5), 329–342. https://doi.org/10.1016/J.TRF.2010.06.001
Fitriastuti, F., & Kresnanto, N. C. (2021). Measurement of user interest in public transport performance variables using ahp. In Lecture Notes in Civil Engineering (Vol. 132). https://doi.org/10.1007/978-981-33-6311-3_86
Fulponi, J. I. (2023). Traffic congestion in Buenos Aires: diagnosis and public policy recommendations for a more sustainable city. Transportation Research Procedia, 69(2022), 21–28. https://doi.org/10.1016/j.trpro.2023.02.140
Gärling, T., & Schuitema, G. (2007). Travel demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility. Journal of Social Issues, 63(1), 139–153. https://doi.org/10.1111/J.1540-4560.2007.00500.X
Goepel, K. (2018). Implementation of an Online software tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469–487. https://doi.org/10.13033/ijahp.v10i3.590
Habibian, M., & Kermanshah, M. (2011). Exploring the role of transportation demand management policies’ interactions. Scientia Iranica, 18(5), 1037–1044. https://doi.org/10.1016/J.SCIENT.2011.09.005
Hamilton, T. L., & Wichman, C. J. (2018). Bicycle infrastructure and traffic congestion: Evidence from DC’s Capital Bikeshare. Journal of Environmental Economics and Management, 87, 72–93. https://doi.org/10.1016/j.jeem.2017.03.007
He, J. W., Zeng, Z. X., & Li, Z. H. (2009). An analysis on effectiveness of transportation demand management in Beijing. Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/ Journal of Transportation Systems Engineering and Information Technology, 9(6), 114–119. https://doi.org/10.1016/s1570-6672(08)60091-4
Islam, R., & Saaty, T. L. (2010). The Analytic Hierarchy Process in the Transportation Sector. In Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems (Vol. 634, pp. 79–91). Springer. https://doi.org/10.1007/978-3-642-04045-0
Karanikola, P., Panagopoulos, T., Tampakis, S., & Tsantopoulos, G. (2018). Cycling as a smart and green mode of transport in small touristic cities. Sustainability (Switzerland), 10(1), 1–18. https://doi.org/10.3390/su10010268
KCATA. (2023). Environmental Benefits of Public Transit. https://www.kcata.org/about_kcata/entries/environmental_benefits_of_public_transit
Kresnanto, N. C. (2019). Model of relationship between car ownership growth and economic growth in Java. IOP Conference Series: Materials Science and Engineering, 650(1), 0–8. https://doi.org/10.1088/1757-899X/650/1/012047
Kresnanto, N. C. (2021a). Laporan Teknis Studi Manajemen Lalu Lintas Kawasan Heritage Kranggan Yogyakarta. https://www.researchgate.net/publication/322756028_Laporan_Teknis_Studi_Manajemen_Lalu_Lintas_Kawasan_Heritage_Kranggan_Yogyakarta
Kresnanto, N. C. (2021b). Transport Demand Management (TDM) Kota Yogyakarta. https://www.researchgate.net/publication/364383292_Transport_Demand_Management_TDM_Kota_Yogyakarta
Kusumantoro, I. P., Martha, E., & Kipuw, D. (2009). Level of Effectiveness of the Implementation of Transport Demand Management (TDM) Strategy in Indonesian Cities. Proceedings of the Eastern Asia Society for Transportation Studies, 7.
Le, T. P. L., & Trinh, T. A. (2016). Encouraging public transport use to reduce traffic congestion and air pollutant: A case study of Ho Chi Minh City, Vietnam. Procedia Engineering, 142, 236–243. https://doi.org/10.1016/j.proeng.2016.02.037
Li, R., & Guo, M. (2016). Effects of odd–even traffic restriction on travel speed and traffic volume: Evidence from Beijing Olympic Games. Journal of Traffic and Transportation Engineering (English Edition), 3(1), 71–81. https://doi.org/10.1016/j.jtte.2016.01.002
Mattsson, L. G. (2008). Road pricing: Consequences for traffic, congestion and location. Advances in Spatial Science, 55, 29–48. https://doi.org/10.1007/978-3-540-77150-0_3
Mittal, S., & Biswas, A. (2019). Exploring transportation demand management as a strategy to decongest Indian cities and improve mobility. International Review for Spatial Planning and Sustainable Development, 7(4), 185–211. https://doi.org/10.14246/irspsda.7.4_185
Moslem, S., & Çelikbilek, Y. (2020). An integrated grey AHP-MOORA model for ameliorating public transport service quality. European Transport Research Review, 12(1), 1–13. https://doi.org/10.1186/s12544-020-00455-1
Moslem, S., & Duleba, S. (2017). Analytic Hierarchy Process Evaluation of Public Transport System in Budapest, Hungary. 660–665.
Nalmpantis, D., Roukouni, A., Genitsaris, E., Stamelou, A., & Naniopoulos, A. (2019). Evaluation of innovative ideas for Public Transport proposed by citizens using Multi-Criteria Decision Analysis (MCDA). European Transport Research Review, 11(1). https://doi.org/10.1186/s12544-019-0356-6
Nugmanova, A., Arndt, W. H., Hossain, M. A., & Kim, J. R. (2019). Effectiveness of ring roads in reducing traffic congestion in cities for long run: Big Almaty ring road case study. Sustainability (Switzerland), 11(18). https://doi.org/10.3390/su11184973
Nygaard Nelson. (2008). 7 Best Practices in Transportation Demand Management. Transportation, 3(Transportation Demand Management), 28. http://www.seattle.gov/transportation/docs/ump/07 SEATTLE Best Practices in Transportation Demand Management.pdf
OECD Regions and Cities at a Glance 2020. (2020). https://doi.org/10.1787/26173212
Podvezko, V., Sivilevicius, H., & Podviezko, A. (2014). Scientific applications of the AHP method in transport problems. Archives of Transport, 29(1), 47–54. https://doi.org/10.5604/08669546.1146966
Pradana, F. (2012). Penggunaan Metode Analytic Hierarchy Process (AHP) Dalam Kajian Strategi Transportation Demand 124 Management (TDM) (Studi Kasus Kota Bandung). Teknika: Jurnal Sains Dan Teknologi, 8(2), 124. https://doi.org/10.36055/tjst.v9i2.6693
Saaty, T. L. (1980). The Analytic Hierarchy Process. McGra w-Hill.
Saaty, T. L. (1990). How to make a decision: The Analytic Hierarchy Process. In European Journal of Operational Research (Vol. 48, pp. 9–26). https://doi.org/10.1016/0377-2217(90)90057-I
Saaty, T. L. (2005). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In International Series in Operations Research and Management Science (78th ed., Vol. 78, pp. 345–405). Springer New York LLC. https://doi.org/10.1007/978-1-4939-3094-4_10
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
Schuitema, G., Steg, L., & Rothengatter, J. A. (2010). The acceptability, personal outcome expectations, and expected effects of transport pricing policies. Journal of Environmental Psychology, 30(4), 587–593. https://doi.org/10.1016/j.jenvp.2010.05.002
Šimunovi?, L., Br?i?, D., & Sadi?, H. (2013). Choice of an Optimal Management Strategy of Transport Demand Using Multi-Criteria Analysis: City of Zagreb Case Study. International Journal for Traffic and Transport Engineering, 3(1), 54–63. https://doi.org/10.7708/ijtte.2013.3(1).05
Soltani, A., & Namdarian, A. (2012). Feasibility Of Transport Demand Management Through A Bottom-Up Planning Approach. Theoretical And Empirical Researches in Urban Management, 7(4), 63–72.
Southern California Association of Governments. (2019). Transportation Demand Management Strategic: Plan dan Final Report (Issue August).
Steg, L., & Schuitema, G. (2007). Behavioural Responses To Transport Pricing: A Theoretical Analysis. Threats from Car Traffic to the Quality of Urban Life, 347–366. https://doi.org/10.1108/9780080481449-019
Tainio, M., de Nazelle, A. J., Götschi, T., Kahlmeier, S., Rojas-Rueda, D., Nieuwenhuijsen, M. J., de Sá, T. H., Kelly, P., & Woodcock, J. (2016). Can air pollution negate the health benefits of cycling and walking? Preventive Medicine, 87, 233–236. https://doi.org/10.1016/J.YPMED.2016.02.002
Thomas, F., Carran-Fletcher, A., Joseph, C., & Philbin, S. (2020). Travel demand management: strategies and outcomes (Issue April). www.nzta.govt.nz
Transportation Demand Management | Organizing and Planning for Operations - FHWA Office of Operations. (2022). https://ops.fhwa.dot.gov/plan4ops/trans_demand.htm#ftn1
United States. Department of Transportation. (2020). Integrating Demand Management into the Transportation Planning Process: A Desk Reference - Chapter 10. Known Effectiveness of TDM Strategies - FHWA Office of Operations. https://ops.fhwa.dot.gov/publications/fhwahop12035/chap10.htm
Urban Sprawl dan Kemacetan di Yogyakarta | Balairungpress. (2018). https://www.balairungpress.com/2018/03/urban-sprawl-dan-kemacetan-di-yogyakarta/
US department of Transportation. (1994). Overview of Travel Demand Management Measures. Reports on Travel Demand Management (TDM) Provided by the Federal Highway Administration and the Federal Transit Administration, 21.
Wang, Y., Geng, K., May, A. D., & Zhou, H. (2022). The impact of traffic demand management policy mix on commuter travel choices. Transport Policy, 117, 74–87. https://doi.org/10.1016/J.TRANPOL.2022.01.002
Weber, E. U. (2010). What shapes perceptions of climate change? Wiley Interdisciplinary Reviews: Climate Change, 1(3), 332–342. https://doi.org/10.1002/wcc.41
Whitmarsh, L., Swartling, Å. G., & Jäger, J. (2009). Participation of experts and non-experts in a sustainability assessment of mobility. Environmental Policy and Governance, 19(4), 232–250. https://doi.org/10.1002/eet.513
Xenias, D., & Whitmarsh, L. (2013). Dimensions and determinants of expert and public attitudes to sustainable transport policies and technologies. Transportation Research Part A: Policy and Practice, 48, 75–85. https://doi.org/10.1016/j.tra.2012.10.007
Yang, J., Liu, A., Qin, P., & Linn, J. (2016). The Effect of Owning a Car on Travel Behavior: Evidence from the Beijing License Plate Lottery. In SSRN. https://doi.org/10.2139/ssrn.2789824.