Optimized Artificial Neural Network for the Classification of Urban Environment Comfort using Landsat-8 Remote Sensing Data in Greater Jakarta Area, Indonesia


  • Nurwita Mustika Sari Research Center for Remote Sensing - National Research and Innovation Agency BRIN
  • Dony Kushardono Research Center for Remote Sensing, National Research and Innovation Agency
  • Mukhoriyah Mukhoriyah Research Center for Remote Sensing, National Research and Innovation Agency
  • Kustiyo Kustiyo Research Center for Remote Sensing, National Research and Innovation Agency
  • Masita Dwi Mandini Manessa Universitas Indonesia




Artificial Intelligence, Digital classification, Neural Network optimization, Landsat-8, Urban Environment Comfort


The development of computer vision technology as a type of artificial intelligence is increasing rapidly in various fields. This method uses deep learning methods based on artificial neural networks, a well-performed algorithm in multi-parameter analysis. One of the development of computer vision models and algorithms is for a thematic digital image classification, such as environmental analysis. Remote sensing based digital image classification is one of the reliable tools for environmental quality analysis. This study aims to perform neural network optimization for the analysis of the urban environment comfort based on satellite data. The input data used are 4 types of geobiophysical indexes as urban environmental comfort parameters derived from cloud-free annual mosaics Landsat-8 remote sensing satellite data. The results obtained in this study indicate that the 1 hidden layer neural network architecture with 16 neurons for the classification of urban environmental comfort and 10 other land cover classes is quite good. The result of the classification using this optimized artificial neural network shows that the distribution of classes is very uncomfortable which dominates the Greater Jakarta area and its surroundings. For other classes in the study area, some are uncomfortable and rather comfortable.  By using this method, we obtained a fast classification training time of 18 seconds for 145 iterations to achieve an RMS Error of 0.01, and has a fairly high classification accuracy overall 89% with a Kappa coefficient of 0.88, while the 2 hidden layer neural network architecture does not succeed in achieving convergence


Download data is not yet available.

Author Biographies

Dony Kushardono, Research Center for Remote Sensing, National Research and Innovation Agency



Mukhoriyah Mukhoriyah, Research Center for Remote Sensing, National Research and Innovation Agency



Kustiyo Kustiyo, Research Center for Remote Sensing, National Research and Innovation Agency



Masita Dwi Mandini Manessa, Universitas Indonesia




Al-Masaodi, H. J. O., & Al-Zubaidi, H. A. M. (2021). Spatial-temporal changes of land surface temperature and land cover over Babylon Governorate, Iraq. Materials Today: Proceedings, S221478532103755X. https://doi.org/10.1016/j.matpr.2021.05.179

Arsenov, A., Ruban, I., Smelyakov, K., & Chupryna, A. (2018). Evolution of Convolutional Neural Network Architecture in Image Classification Problems. 11.

Astria, C., Windarto, A. P., & Damanik, I. S. (2022). Pemilihan Model Arsitektur Terbaik dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation. 9(1), 6.

Bachir, N., Bounoua, L., Aiche, M., Maliki, M., Nigro, J., & El Ghazouani, L. (2021). The simulation of the impact of the spatial distribution of vegetation on the urban microclimate: A case study in Mostaganem. Urban Climate, 39, 100976. https://doi.org/10.1016/j.uclim.2021.100976

Baig, M. H. A., Zhang, L., Shuai, T., & Tong, Q. (2014). Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5), 423–431. https://doi.org/10.1080/2150704X.2014.915434

Benardos, P. G., & Vosniakos, G.-C. (2007). Optimizing feedforward artificial neural network architecture. Engineering Applications of Artificial Intelligence, 20(3), 365–382. https://doi.org/10.1016/j.engappai.2006.06.005

Dewanti Dimyati, R., Danoedoro, P., Hartono, H., & Kustiyo, K. (2018). A Minimum Cloud Cover Mosaic Image Model of the Operational Land Imager Landsat-8 Multitemporal Data using Tile based. International Journal of Electrical and Computer Engineering (IJECE), 8(1), 360. https://doi.org/10.11591/ijece.v8i1.pp360-371

Faisal, A.-A.-, Kafy, A.-A., Al Rakib, A., Akter, K. S., Jahir, D. Md. A., Sikdar, Md. S., … Rahman, Md. M. (2021). Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, 4, 100192. https://doi.org/10.1016/j.envc.2021.100192

Gu, H., & Wei, Y. (2021). Environmental monitoring and landscape design of green city based on remote sensing image and improved neural network. Environmental Technology & Innovation, 23, 101718. https://doi.org/10.1016/j.eti.2021.101718

Heydari, S. S., & Mountrakis, G. (2019). Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 192–210. https://doi.org/10.1016/j.isprsjprs.2019.04.016

Jamei, Y., Rajagopalan, P., & Sun, Q. (Chayn). (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of The Total Environment, 659, 1335–1351. https://doi.org/10.1016/j.scitotenv.2018.12.308

Kushardono, D. (2017). Klasifikasi Digital pada Penginderaan Jauh. Bogor, Indonesia: PT Penerbit IPB Press.

Kushardono, D. (2019). Klasifikasi Digital Data Penginderaan Jauh Mendukung Percepatan Penyediaan Informasi GeospasiaL. Jakarta, Indonesia: Lembaga Penerbangan dan Antariksa Nasional.

Kushardono D., Fukue K., Shimoda H., & Sakata T. (1995). Optimized Neural Network for Spatial Land cover Classification with the aid of Co occurrence Matrix. Journal of the Japan society of photogrammetry and remote sensing, 34(4), 22–35. https://doi.org/10.4287/jsprs.34.4_22

Kustiyo, . (2017). Development Of Annual Landsat 8 Composite Over Central Kalimantan, Indonesia Using Automatic Algorithm To Minimize Cloud. International Journal of Remote Sensing and Earth Sciences (IJReSES), 13(1), 51. https://doi.org/10.30536/j.ijreses.2016.v13.a2714

Li, J., Zhang, B., & Huang, X. (2022). A hierarchical category structure based convolutional recurrent neural network (HCS-ConvRNN) for Land-Cover classification using dense MODIS Time-Series data. International Journal of Applied Earth Observation and Geoinformation, 108, 102744. https://doi.org/10.1016/j.jag.2022.102744

Luo, R., Tian, F., Qin, T., Chen, E., & Liu, T.-Y. (2018). Neural Architecture Optimization. 12.

Maulik, R., Egele, R., Lusch, B., & Balaprakash, P. (2020). Recurrent Neural Network Architecture Search for Geophysical Emulation. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 1–14. Atlanta, GA, USA: IEEE. https://doi.org/10.1109/SC41405.2020.00012

Oliveira, M. F. de, Santos, A. F. dos, Kazama, E. H., Rolim, G. de S., & Silva, R. P. da. (2021). Determination of application volume for coffee plantations using artificial neural networks and remote sensing. Computers and Electronics in Agriculture, 184, 106096. https://doi.org/10.1016/j.compag.2021.106096

Rozenstein, O., Qin, Z., Derimian, Y., & Karnieli, A. (2014). Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors, 14(4), 5768–5780. https://doi.org/10.3390/s140405768

Rushayati, S. B., & Hermawan, R. (2013). Characteristics of Urban Heat Island Condition in DKI Jakarta. Forum Geografi, 27(2), 111. https://doi.org/10.23917/forgeo.v27i2.2370

Silva, L. P. e, Xavier, A. P. C., da Silva, R. M., & Santos, C. A. G. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21, e00811. https://doi.org/10.1016/j.gecco.2019.e00811

Wijaya, T. A., & Prayudi, Y. (2010, June 19). Implementasi Visi Komputer Dan Segmentasi Citra Untuk Klasifikasi Bobot Telur Ayam Ras. 5. Yogyakarta.

Windarto, A. P., Lubis, M. R., & Solikhun, S. (2018). Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional. KLIK - KUMPULAN JURNAL ILMU KOMPUTER, 5(2), 147. https://doi.org/10.20527/klik.v5i2.148

Worku, G., Teferi, E., & Bantider, A. (2021). Assessing the effects of vegetation change on urban land surface temperature using remote sensing data: The case of Addis Ababa city, Ethiopia. Remote Sensing Applications: Society and Environment, 22, 100520. https://doi.org/10.1016/j.rsase.2021.100520

Zhang, X., Zhang, Y., Qian, B., Liu, X., Li, X., Wang, X., … Wang, L. (2019). Classifying Breast Cancer Histopathological Images Using a Robust Artificial Neural Network Architecture. In I. Rojas, O. Valenzuela, F. Rojas, & F. Ortuño (Eds.), Bioinformatics and Biomedical Engineering (pp. 204–215). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-17938-0_19




How to Cite

Sari, N. M., Kushardono, D., Mukhoriyah, M., Kustiyo, K., & Manessa, M. D. M. (2023). Optimized Artificial Neural Network for the Classification of Urban Environment Comfort using Landsat-8 Remote Sensing Data in Greater Jakarta Area, Indonesia . Journal of Applied Engineering and Technological Science (JAETS), 4(2), 743–755. https://doi.org/10.37385/jaets.v4i2.1760