Heart Disease Prediction based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization


  • Agung Muliawan Institut Teknologi dan Sains Mandala
  • Achmad Rizal Telkom University
  • Sugondo Hadiyoso Telkom University




Heart Disease, Machine learning, Dimensionality Reduction, Parameter Optimization, Ensemble Classifier


This study describes the prediction of heart disease using ensemble classifiers with parameter optimization. As input, a public dataset was taken from UCI machine learning repository, which refers to the dataset at UCI Machine learning. The dataset consists of 13 variables that are considered to influence heart disease. Particle swarm optimization (PSO) was used for feature selection and principal component analysis (PCA) for feature extraction to reduce the features' dimensions. The application of parameter optimization on several machine learning methods such as SVM (Radial Basis Function), Deep learning, and Ensemble Classifier (bagging and boosting) to get the highest accuracy comparison. The results of this study using PSO dimensionality reduction in the public dataset of heart disease resulted in the slightest accuracy compared to PCA. In contrast, the highest accuracy was obtained from optimizing Deep Learning parameters with an accuracy of 84.47% and optimization of SVM RBF parameters with an accuracy of 83.56%. The highest accuracy in the ensemble classifier using bagging on SVM of 83.51%, with a difference of 0.5% from SVM without using bagging.



Download data is not yet available.


Abbaszadeh, B., Haddad, T., & Yagoub, M. C. E. (2019). Probabilistic prediction of Epileptic Seizures using SVM. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 7, 3442–3445. https://doi.org/10.1109/EMBC.2019.8856286

Ahmad, A. A., & Polat, H. (2023). Prediction of Heart Disease Based on Machine Learning Using Jellyfish Optimization Algorithm. Diagnostics, 13(14), 2392. https://doi.org/10.3390/diagnostics13142392

Al-Mawali, A. (2015). Non-communicable diseases: Shining a light on cardiovascular disease, Oman’s biggest killer. Oman Medical Journal, 30(4), 227–228. https://doi.org/10.5001/omj.2015.47

Ave, A., Fauzan, H., S, R. A., & Zakaria, H. (2015). Early Detection of Cardiovascular Disease with Photoplethysmogram ( PPG ) Sensor. The 5th International Conference on Electrical Engineering and Informatics 2015, 676–681.

Awad, M., & Khanna, R. (2015). Support Vector Machines for Classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (Nomor January, hal. 1–248). https://doi.org/10.1007/978-1-4302-5990-9

Bharti, R., Khamparia, A., Shabaz, M., Dhiman, G., Pande, S., & Singh, P. (2021). Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Computational Intelligence and Neuroscience, 2021, 1–11. https://doi.org/10.1155/2021/8387680

Cheng, Y., Hu, Y., Hou, M., Pan, T., He, W., & Ye, Y. (2020). Atrial fibrillation detection directly from compressed ECG with the prior of measurement matrix. Information (Switzerland), 11(9), 1–15. https://doi.org/10.3390/INFO11090436

Cunningham, R., Poppe, K., Peterson, D., Every-Palmer, S., Soosay, I., & Jackson, R. (2019). Prediction of cardiovascular disease risk among people with severe mental illness: A cohort study. PLoS ONE, 14(9), 1–13. https://doi.org/10.1371/journal.pone.0221521

El-Bialy, R., Salamay, M. A., Karam, O. H., & Khalifa, M. E. (2015). Feature Analysis of Coronary Artery Heart Disease Data Sets. Procedia Computer Science, 65(Iccmit), 459–468. https://doi.org/10.1016/j.procs.2015.09.132

Fahoum, A. S. Al, Al-haija, A. O. A., & Alshraideh, H. A. (2023). Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process. Bioengineering, 10, 1–13.

Farkouh, M. E., Boden, W. E., Bittner, V., Muratov, V., Hartigan, P., Ogdie, M., Bertolet, M., Mathewkutty, S., Teo, K., Maron, D. J., Sethi, S. S., Domanski, M., Frye, R. L., & Fuster, V. (2013). Risk factor control for coronary artery disease secondary prevention in large randomized trials. Journal of the American College of Cardiology, 61(15), 1607–1615. https://doi.org/10.1016/j.jacc.2013.01.044

Hadiyoso, S., & Rizal, A. (2017). Electrocardiogram signal classification using higher-order complexity of hjorth descriptor. Advanced Science Letters, 23(5), 3972–3974. https://doi.org/10.1166/asl.2017.8251

Hojin Nam, Minseo Rhee, Jeung-Sun Lee, Y.-G. J. B. K. (2021). Effective Diagnosis of Coronary Artery Disease using Case-based Reasoning. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(5), 449–457. https://doi.org/10.17762/turcomat.v12i5.991

Hossain, M. I., Maruf, M. H., Khan, M. A. R., Prity, F. S., Fatema, S., Ejaz, M. S., & Khan, M. A. S. (2023). Heart disease prediction using distinct artificial intelligence techniques: performance analysis and comparison. Iran Journal of Computer Science, 6(4), 397–417. https://doi.org/10.1007/s42044-023-00148-7

Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., & Homayouni, S. (2021). Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation. Remote Sensing, 13(21), 4405. https://doi.org/10.3390/rs13214405

Jamian, J. J., Abdullah, M. N., Mokhlis, H., Mustafa, M. W., & Bakar, A. H. A. (2014). Global particle swarm optimization for high dimension numerical functions analysis. Journal of Applied Mathematics, 2014, 1–15. https://doi.org/10.1155/2014/329193

Khan Mamun, M. M. R., & Elfouly, T. (2023). Detection of Cardiovascular Disease from Clinical Parameters Using a One-Dimensional Convolutional Neural Network. Bioengineering, 10(7), 796. https://doi.org/10.3390/bioengineering10070796

Li, F., Zhang, Z., Wang, L., & Liu, W. (2022). Heart sound classification based on improved mel-frequency spectral coefficients and deep residual learning. Frontiers in Physiology, 13, 1–16. https://doi.org/10.3389/fphys.2022.1084420

Li, Y., Shi, D., & Bu, F. (2019). Automatic recognition of rock images based on convolutional neural network and discrete cosine transform. Traitement Du Signal, 36(5), 463–469. https://doi.org/10.18280/ts.360512

Liastuti, L. D., Siswanto, B. B., Sukmawan, R., Jatmiko, W., Nursakina, Y., Yusticia, R., Putri, I., Jati, G., & Nur, A. A. (2022). Detecting Left Heart Failure in Echocardiography through Machine Learning?: A Systematic Review. Rev. Cardiovasc. Med., 23(12), 1–10.

Liu, L., Wu, X., Li, S., Li, Y., Tan, S., & Bai, Y. (2022). Solving the class imbalance problem using ensemble algorithm: application of screening for aortic dissection. BMC Medical Informatics and Decision Making, 22(1), 82. https://doi.org/10.1186/s12911-022-01821-w

Mabrouk, A., Omar, S., Bansal, M., & Sengupta, P. P. (2016). Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction. Circulation Research, July, 357–374. https://doi.org/10.1161/CIRCRESAHA.116.309128

Miraswan, K. J., & Maulidevi, N. U. (2016). Particle swarm optimization and fuzzy logic control in gas leakage detector mobile robot. Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT 2015, 150–155. https://doi.org/10.1109/ICACOMIT.2015.7440195

Moturi, S., Vemuru, S., & Rao, S. N. T. (2020). Classification Model for Prediction of Heart Disease using Correlation Coefficient Technique. International Journal of Advanced Trends in Computer Science and Engineering, 9(2), 2117–2123. https://doi.org/10.1007/978-981-10-5699-4_67

Murugananthan, V., & Durairaj, U. K. (2019). RUS boost tree ensemble classifiers for occupancy detection. International Journal of Recent Technology and Engineering, 8(2 Special Issue 2), 272–277. https://doi.org/10.35940/ijrte.B1048.0782S219

Nardin, M., Verdoia, M., Negro, F., Rolla, R., Tonon, F., & De Luca, G. (2020). Impact of active smoking on the immature platelet fraction and its relationship with the extent of coronary artery disease. European Journal of Clinical Investigation, 50(2), 1–10. https://doi.org/10.1111/eci.13181

Nagavelli, U., Samanta, D., & Chakraborty, P. (2022). Machine Learning Technology-Based Heart Disease Detection Models. Journal of Healthcare Engineering, 2022, 1–9. https://doi.org/10.1155/2022/7351061

Pestana, J., Belo, D., & Gamboa, H. (2020). Detection of Abnormalities in Electrocardiogram (ECG) using Deep Learning. Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, 236–243. https://doi.org/10.5220/0008967302360243

Pimentel, M. A. F., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty detection. Signal Processing, 99, 215–249. https://doi.org/10.1016/j.sigpro.2013.12.026

Rizal, A., & Suratman, F. Y. (2020). Classification of Normal and Murmur Hearts Sound using the Fractal Method. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8178–8183. https://doi.org/10.30534/ijatcse/2020/181952020

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39. https://doi.org/10.1007/s10462-009-9124-7

Sharma, S., & Parmar, M. (2020). Heart Diseases Prediction using Deep Learning Neural Network Model. International Journal of Innovative Technology and Exploring Engineering, 9(3), 2244–2248. https://doi.org/10.35940/ijitee.c9009.019320

Srivastava, D. K., & Bhambhu, L. (2010). Data classification using support vector machine. Journal of Theoretical and Applied Information Technology, 12(1), 1–7.

Thrun, M. C., Märte, J., & Stier, Q. (2023). Analyzing Quality Measurements for Dimensionality Reduction. Machine Learning and Knowledge Extraction, 5(3), 1076–1118. https://doi.org/10.3390/make5030056

Vachharajani, B., & Pandya, D. (2022). Dimension reduction techniques: Current status and perspectives. Materials Today: Proceedings, 62, 7024–7027. https://doi.org/10.1016/j.matpr.2021.12.549

Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., … Tsao, C. W. (2021). Heart Disease and Stroke Statistics - 2021 Update: A Report From the American Heart Association. Circulation, 143(8), E254–E743. https://doi.org/10.1161/CIR.0000000000000950

Winnige, P., Vysoky, R., Dosbaba, F., & Batalik, L. (2021). Cardiac rehabilitation and its essential role in the secondary prevention of cardiovascular diseases. World Journal of Clinical Cases, 9(8), 1761–1784. https://doi.org/10.12998/wjcc.v9.i8.1761

Yao, F., Coquery, J., & Lê Cao, K.-A. (2012). Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 13(1), 24. https://doi.org/10.1186/1471-2105-13-24

Zeinali, Y., & Niaki, S. T. A. (2022). Heart sound classification using signal processing and machine learning algorithms. Machine Learning with Applications, 7, 100206. https://doi.org/10.1016/j.mlwa.2021.100206

Zhenyu Meng, Yuxin Zhong, Guojun Mao, & Yan Liang. (2022). PSO-sono: A novel PSO variant for single-objective numerical optimization. Information Sciences, 586, 176–191.




How to Cite

Muliawan, A., Rizal, A., & Hadiyoso, S. (2023). Heart Disease Prediction based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization . Journal of Applied Engineering and Technological Science (JAETS), 5(1), 258–267. https://doi.org/10.37385/jaets.v5i1.2169