Economic Analysis of Rooftop Based On-Grid and Off-Grid Photovoltaic Systems in Equatorial Area
DOI:
https://doi.org/10.37385/jaets.v5i1.3158Keywords:
Economic Study, On-Grid PV System, Off-Grid PV System, NPC ValueAbstract
Through a thorough analysis using Net Present Cost (NPC) over a 20-year period, this research presents a comprehensive and economically optimized solar panel design methodology. The study examines two different PV system configurations: On-Grid PV and Off-Grid PV, using sophisticated simulation and analytical techniques with the aid of HOMER Pro software. The simulation results offer compelling new information about these systems' economic viability. The simulation results in an NPC value of IDR 31,386,360,- for the Off-Grid PV configuration. The On-Grid PV system, in contrast, exhibits a significantly lower NPC value of IDR 8,903,329,- emphasizing its superior economic performance. This On-Grid PV system boasts a significant energy generation capacity of 5,012 kWh/year in addition to favorable cost efficiency. Notably, this is greater than the National Power Company's 1,186 kWh/year energy output. These results highlight the financial benefits of the On-Grid PV system and demonstrate its capability to provide affordable and sustainable energy solutions over a long period. The thorough analysis carried out in this study aids in the optimization of solar panel designs, offers insightful information for future sustainable energy projects, and emphasizes the crucial part that economic factors play in influencing the adoption of renewable energy technologies.
Downloads
References
Ab. Rahman, A., Salam, Z., Shaari, S., & Ramli, M. Z. (2019). Methodology to Determine Photovoltaic Inverter Conversion Efficiency for the Equatorial Region. Applied Sciences, 10(1), 201. https://doi.org/10.3390/app10010201
Abdelhafez, M. H. H., Touahmia, M., Noaime, E., Albaqawy, G. A., Elkhayat, K., Achour, B., & Boukendakdji, M. (2021). Integrating Solar Photovoltaics in Residential Buildings: Towards Zero Energy Buildings in Hail City, KSA. Sustainability, 13(4), 1845. https://doi.org/10.3390/su13041845
Ahmad, M., Khattak, A., Kashif Janjua, A., Alahmadi, A. A., Salman Khan, M., & Ullah, N. (2022). Techno-economic feasibility analyses of grid- connected solar photovoltaic power plants for small scale industries of Punjab, Pakistan. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.1028310
Anugrah, P., & Pratama, R. W. (2022). Techno-Economic Simulation of On-grid PV System at a New Grand Mosque in Bukittinggi using HOMER. Jurnal Nasional Teknik Elektro, 11(1), 1–6. https://doi.org/10.25077/jnte.v11n1.985.2022
Aprillia, B. S., Silalahi, D. K., Agung, M., & Rigoursyah, F. (2019). Desain Sistem Panel Surya On-Grid Untuk Skala Rumah Tangga Menggunakan Perangkat Lunak HOMER (On-Grid Photovoltaic Systems Design using HOMER Software for Residential Load). Jurnal Teknologi Informasi Dan Multimedia, 1(3), 174–180. https://doi.org/10.35746/jtim.v1i3.39
Bachtiar, I. K., & Syafik, M. (2016). Rancangan Implementasi Pembangkit Listrik Tenaga Surya (PLTS) Skala Rumah Tangga menggunakan Software HOMER: untuk Masyarakat Kelurahan Pulau Terong Kecamatan Belakang Padang Kota Batam. Jurnal Sustainable: Jurnal Hasil Penelitian Dan Industri Terapan, 5(2), 17–25. https://doi.org/10.31629/sustainable.v5i2.368
Bahramara, S., Moghaddam, M. P., & Haghifam, M. R. (2016). Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 62, 609–620. https://doi.org/10.1016/j.rser.2016.05.039
Bazionis, I. K., Kousounadis?Knousen, M. A., Georgilakis, P. S., Shirazi, E., Soudris, D., & Catthoor, F. (2023). A taxonomy of short?term solar power forecasting: Classifications focused on climatic conditions and input data. IET Renewable Power Generation, 17(9), 2411–2432. https://doi.org/10.1049/rpg2.12736
Bismark, K. M. K. C., Caballa, L. G. C., Yap, C. M. F., Peña, R. A. S., Parocha, R. C., & Macabebe, E. Q. B. (2023). Optimization of a hybrid renewable energy system for a rural community using PSO. IOP Conference Series: Earth and Environmental Science, 1199(1), 012034. https://doi.org/10.1088/1755-1315/1199/1/012034
Budes, F. A. B., Ochoa, G. V., Obregon, L. G., Arango-Manrique, A., & Álvarez, J. R. N. (2020). Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia. Energies, 13(7), 1662. https://doi.org/10.3390/en13071662
Caeiro, S., Hamón, L. A. S., Martins, R., & Aldaz, C. E. B. (2020). Sustainability Assessment and Benchmarking in Higher Education Institutions—A Critical Reflection. Sustainability, 12(2), 543. https://doi.org/10.3390/su12020543
Chepp, E. D., & Krenzinger, A. (2021). A methodology for prediction and assessment of shading on PV systems. Solar Energy, 216, 537–550. https://doi.org/10.1016/j.solener.2021.01.002
Datta, U., Kalam, A., & Shi, J. (2020). The economic prospect of rooftop photovoltaic (PV) system in the commercial buildings in Bangladesh: a case study. Clean Technologies and Environmental Policy, 22(10), 2129–2143. https://doi.org/10.1007/s10098-020-01963-3
de Lima Montenegro Duarte, J. G. C., Zemero, B. R., de Souza, A. C. D. B., de Lima Tostes, M. E., & Bezerra, U. H. (2021). Building Information Modeling approach to optimize energy efficiency in educational buildings. Journal of Building Engineering, 43, 102587. https://doi.org/10.1016/j.jobe.2021.102587
Duman, A. C., & Güler, Ö. (2020). Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy, 148, 697–711. https://doi.org/10.1016/j.renene.2019.10.157
Formolli, M., Croce, S., Vettorato, D., Paparella, R., Scognamiglio, A., Mainini, A. G., & Lobaccaro, G. (2022). Solar Energy in Urban Planning: Lesson Learned and Recommendations from Six Italian Case Studies. Applied Sciences, 12(6), 2950. https://doi.org/10.3390/app12062950
Fu, F., Li, J., Yang, T. C., Liang, H., Faes, A., Jeangros, Q., Ballif, C., & Hou, Y. (2022). Monolithic Perovskite?Silicon Tandem Solar Cells: From the Lab to Fab?. Advanced Materials, 34(24). https://doi.org/10.1002/adma.202106540
Ghivari, R.?;, & Revankar, P. P. (2016). Stand Alone Solar System. International Journal of Science, Technology & Management, 04(01), 1336–1341.
Hamdani, Pulungan, A. B., Myori, D. E., Elmubdi, F., & Hasannuddin, T. (2021). Real Time Monitoring System on Solar Panel Orientation Control Using Visual Basic. Journal of Applied Engineering and Technological Science, 2(2), 112–124. https://doi.org/10.37385/jaets.v2i2.249
Haegel, N. M., Atwater, H., Barnes, T., Breyer, C., Burrell, A., Chiang, Y.-M., De Wolf, S., Dimmler, B., Feldman, D., Glunz, S., Goldschmidt, J. C., Hochschild, D., Inzunza, R., Kaizuka, I., Kroposki, B., Kurtz, S., Leu, S., Margolis, R., Matsubara, K., … Bett, A. W. (2019). Terawatt-scale photovoltaics: Transform global energy. Science, 364(6443), 836–838. https://doi.org/10.1126/science.aaw1845
Hidayat, F., Winardi, B., & Nugroho, A. (2019). Analisis Ekonomi Perencanaan Pembangkit Listrik Tenaga Surya (Plts) Di Departemen Teknik Elektro Universitas Diponegoro. Transient, 7(4), 875. https://doi.org/10.14710/transient.7.4.875-882
Ihsan, K. T. N., Sakti, A. D., & Wikantika, K. (2021). GEOSPATIAL ASSESSMENT FOR PLANNING A SMART ENERGY CITY USING ROOFTOP SOLAR PHOTOVOLTAIC IN BANDUNG CITY, INDONESIA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-3–2, 83–87. https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-83-2021
Kementerian ESDM. (2022). Capaian Kinerja Sektor ESDM tahun 2021 dan Rencana tahun 2022. In Website Kementerian ESDM.
Khairi, N. H. M., Akimoto, Y., & Okajima, K. (2022). Suitability of rooftop solar photovoltaic at educational building towards energy sustainability in Malaysia. Sustainable Horizons, 4, 100032. https://doi.org/10.1016/j.horiz.2022.100032
Kuno, A. K., Begna, N., & Mebratu, F. (2023). A feasibility analysis of PV-based off-grid rural electrification for a pastoral settlement in Ethiopia. Energy, 282, 128899. https://doi.org/10.1016/j.energy.2023.128899
Manlapaz, J. G. C., Reyes, D. M., Buensuceso, C. P. L., Peña, R. A. S., Parocha, R. C., & Macabebe, E. Q. B. (2023). Optimization and simulation of a grid-connected PV system using load forecasting methods: A case study of a university building. IOP Conference Series: Earth and Environmental Science, 1199(1), 012006. https://doi.org/10.1088/1755-1315/1199/1/012006
Mokhtara, C., Negrou, B., Settou, N., Bouferrouk, A., Yao, Y., & Messaoudi, D. (2021). A GIS-MOPSO Integrated Method for Optimal Design of Grid-Connected HRES for Educational Buildings. In Advances in Renewable Hydrogen and Other Sustainable Energy Carriers (pp. 371–378). https://doi.org/10.1007/978-981-15-6595-3_48
Mondejar, M. E., Avtar, R., Diaz, H. L. B., Dubey, R. K., Esteban, J., Gómez-Morales, A., Hallam, B., Mbungu, N. T., Okolo, C. C., Prasad, K. A., She, Q., & Garcia-Segura, S. (2021). Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Science of The Total Environment, 794, 148539. https://doi.org/10.1016/j.scitotenv.2021.148539
Pachauri, R. K., Mahela, O. P., Sharma, A., Bai, J., Chauhan, Y. K., Khan, B., & Alhelou, H. H. (2020). Impact of Partial Shading on Various PV Array Configurations and Different Modeling Approaches: A Comprehensive Review. IEEE Access, 8, 181375–181403. https://doi.org/10.1109/ACCESS.2020.3028473
Panhwar, I., Sahito, A. R., & Dursun, S. (2017). Designing Off-Grid and On-Grid Renewable Energy Systems Using HOMER Pro Software #. J. Int. Environmental Application & Science, 12(4), 270.
Park, E., Kwon, S. J., & del Pobil, A. P. (2019). Can Large Educational Institutes Become Free from Grid Systems? Determination of Hybrid Renewable Energy Systems in Thailand. Applied Sciences, 9(11), 2319. https://doi.org/10.3390/app9112319
Phap, V., & Nga, N. (2018). Feasibility Study Of Rooftop Photovoltaic Power System For A Research Institute Towards Green Building In Vietnam. EAI Endorsed Transactions on Energy Web, 162825. https://doi.org/10.4108/eai.7-1-2020.162825
Pradhan, A. K., Mohanty, M. K., & Kar, S. K. (2017). Techno-economic Evaluation of Stand-alone Hybrid Renewable Energy System for Remote Village Using HOMER-pro Software. International Journal of Applied Power Engineering (IJAPE), 6(2), 73–88. https://doi.org/10.11591/ijape.v6.i2.pp73-88
Pulungan, A. B., Son, L., Huda, S., Syafii, & Ubaidillah. (2019). Semi active control of solar tracker using variable position of added mass control. 2019 16th International Conference on Quality in Research, QIR 2019 - International Symposium on Electrical and Computer Engineering, 1–5. https://doi.org/10.1109/QIR.2019.8898290
Riayatsyah, T. M. I., Geumpana, T. A., Fattah, I. M. R., Rizal, S., & Mahlia, T. M. I. (2022). Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability, 14(13), 7735 https://doi.org/10.3390/su14137735
Rousis, A. O., Tzelepis, D., Konstantelos, I., Booth, C., & Strbac, G. (2018). Design of a Hybrid AC / DC Microgrid Using HOMER Pro?: Case Study on an Islanded Residential Application. Inventions, 3(3), 55. https://doi.org/10.3390/inventions3030055
Sakti, A. D., Ihsan, K. T. N., Anggraini, T. S., Shabrina, Z., Sasongko, N. A., Fachrizal, R., Aziz, M., Aryal, J., Yuliarto, B., Hadi, P. O., & Wikantika, K. (2022). Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sensing, 14(12), 2796. https://doi.org/10.3390/rs14122796
Shabbir, N., Kütt, L., Raja, H. A., Jawad, M., Allik, A., & Husev, O. (2022). Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia. Energy, 253, 124156. https://doi.org/10.1016/j.energy.2022.124156
Song, D., Jia, B., & Jiao, H. (2022). Review of Renewable Energy Subsidy System in China. Energies, 15(19), 7429. https://doi.org/10.3390/en15197429
Syafii, Pulungan, A. B., Wati, & Fahreza, R. (2020). Techno-economic analysis of tracker based rooftop pv system installation under tropical climate. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 6031–6035. https://doi.org/10.30534/ijatcse/2020/271942020
Tsalis, T. A., Malamateniou, K. E., Koulouriotis, D., & Nikolaou, I. E. (2020). New challenges for corporate sustainability reporting: United Nations’ 2030 Agenda for sustainable development and the sustainable development goals. Corporate Social Responsibility and Environmental Management, 27(4), 1617–1629. https://doi.org/10.1002/csr.1910
Wang, L., Yan, X., Fang, M., Song, H., & Hu, J. (2023). A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case. Sustainability, 15(10), 7975. https://doi.org/10.3390/su15107975
Yap, C. M. F., Bismark, K. M. K. C., Caballa, L. G. C., Pena, R. A. S., Parocha, R. C., & Macabebe, E. Q. B. (2022). Feasibility Study of a Hybrid Renewable Energy System for a Remote Rural Community Using HOMER Pro. 2022 IEEE International Conference on Power and Energy (PECon), 30–35. https://doi.org/10.1109/PECon54459.2022.9988815
Zhang, B., Wei, Z., Li, K., & Zhou, L. (2023). Research on optimization of photovoltaic capacity in the multi-energy complementary power generation system. Journal of Physics: Conference Series, 2491(1), 012021. https://doi.org/10.1088/1742-6596/2491/1/012021