Priority RPL for IOT Based Smart Manufacturing Industries

Authors

  • Krishna Priya M PhD Research Scholar, Department of Computer Science, AJK College of Arts and Sciences, Coimbatore, Tamilnadu, India.
  • Angeline Prasanna G AJK College of Arts and Sciences

DOI:

https://doi.org/10.37385/jaets.v5i1.3247

Keywords:

Destination Oriented Directed Acyclic Graph, Routing Protocol, Low-Power, Lossy Networks

Abstract

A routing protocol used in heterogeneous transport networks for low-power, lossy networks. This is a routing protocol for wireless networks. This protocol follows the same specifications as Zigbee, 6 lopan is IEEE 802.15. 4 Enables both many-to-one and one-to-one communication. To address the need for enhancing in this study proposes a novel methodology called RPL-PG (Routing Protocol for Low-Power and Lossy Networks Priority Generation). Initially sensors like Temperature, Humidity, Vibration, Proximity, Gas and Current Monitoring Sensors are used for smart manufacturing. Consequently, Destination Oriented Directed Acyclic Graph (DODAG) is used for RPL configuration. Based on selected RPL configuration the priority is generated using assign priority count and priority-based queuing. Finally, Fuzzy rules are used to select the RPL path and then update the DODAG finally reached the destination. The study involves setting up a simulated environment using appropriate tools, such as MATLAB. Experimental findings evaluate and compares performance measures, such as Energy Consumption, Network Life Time, Packet Loss Ratio, Packet Delivery Ratio (PDR), E2E Delay, and Network Throughput. The Energy Consumption of the proposed RPL-PG method achieves 43.6 % lower than 38 % and 35.8 % in terms of OMC-RPL and RMA-RP respectively.

Downloads

Download data is not yet available.

References

Alavikia, Z., & Shabro, M., (2022). A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digital Communications and Networks, 8(3), 388-410. https://doi.org/10.1016/j.dcan.2022.01.002

Al-Hilfi, A.Y.M. (2023). Dynamic IoT hierarchical routing optimization using multi-heuristic clustering (Master's thesis, Alt?nba? Üniversitesi/Lisansüstü E?itim Enstitüsü). https://hdl.handle.net/20.500.12939/4019

Alishahi, M., Moghaddam, M.H.Y., & Pourreza, H.R. (2018). Multi-class Routing Protocol Using Virtualization and SDN-enabled Architecture for Smart Grid. Peer Netw. Appl., 11, 380–396. https://doi.org/10.1007/s12083-016-0537-1

Alsulaimani, B., & Islam, A., (2022). Impact of 4ir technology and its impact on the current deployment. arXiv preprint arXiv:2209.01791. https://doi.org/10.48550/arXiv.2209.01791

Arshad, D., Asim, M., Tariq, N., Baker, T., Tawfik, H., & Al-Jumeily OBE, D. (2022). THC-RPL: A lightweight Trust-enabled routing in RPL-based IoT networks against Sybil attack. PloS one, 17(7), 0271277. https://doi.org/10.1371/journal.pone.0271277

Asha, G., & Srivatsa, S.K. (2022). Security-Enabled Retransmission and Energy Conservation Architecture with Cluster-Based Multipath Routing in Heterogeneous Wireless Networks. Journal of Information Technology Research (JITR), 15(1), 1-15. DOI: 10.4018/JITR.299951

Ashrif, F.F., Sundararajan, E.A., Ahmad, R., Hasan, M.K., & Yadegaridehkordi, E. (2023). Survey on the authentication and key agreement of 6LoWPAN: Open issues and future direction. Journal of Network and Computer Applications, 103759. https://doi.org/10.1016/j.jnca.2023.103759

Babu, E.S., Padma, B., Nayak, S.R., Mohammad, N., & Ghosh, U. (2023). Cooperative IDS for Detecting Collaborative Attacks in RPL-AODV Protocol in Internet of Everything. Journal of Database Management (JDM), 34(2), 1-33. DOI: 10.4018/JDM.324099

Behnke, I., Blumschein, C., Danicki, R., Wiesner, P., Thamsen, L., & Kao, O., (2023). Towards a real-time IoT: Approaches for incoming packet processing in cyber–physical systems. Journal of Systems Architecture, 140, 102891. https://doi.org/10.1016/j.sysarc.2023.102891

Bouzidi, M., Gupta, N., Cheikh, F.A., Shalaginov, A., & Derawi, M. (2022). A novel architectural framework on IoT ecosystem, security aspects and mechanisms: A comprehensive survey. IEEE Access. DOI: 10.1109/ACCESS.2022.3207472

Capone, S., Brama, R., Accettura, N., Striccoli, D., & Boggia, G. (2014). An Energy Efficient and Reliable Composite Metric for RPL Organized Networks. In Proceedings of the International Conference on Embedded and Ubiquitous Computing, Milano, Italy, 26–28, 178–18. DOI: 10.1109/EUC.2014.33

Celik, A., Romdhane, I., Kaddoum, G., & Eltawil, A.M. (2022). A top-down survey on optical wireless communications for the internet of things. IEEE Communications Surveys & Tutorials. DOI: 10.1109/EUC.2014.33

Chappala, R., Reddy, E.S., Bhargav, J., & Radhika, G. (2023). Performance Evaluation of Multiple Objective Functions for Parent Selection in Routing Protocol for Low Power Lossy Networks. Tuijin Jishu/Journal of Propulsion Technology, 44(3), 1946-1957. https://doi.org/10.52783/tjjpt.v44.i3.624

EST, A. (2023). III. NECESSARY TECHNOLOGY BACKGROUND. Public Key Infrastructure and its applications for resource-constrained IoT. https://shahidraza.net/assets/pdf-bib/Joel.PhD-PKI.pdf#page=68

Farag, H., Österberg, P., Gidlund, M., & Han, S. (2019, December). RMA-RP: A reliable mobility-aware routing protocol for industrial iot networks. In 2019 IEEE Global Conference on Internet of Things (GCIoT). 1-6. IEEE. DOI: 10.1109/GCIoT47977.2019.9058396

Feijoo-Añazco, A., Garcia-Carrillo, D., Sanchez-Gomez, J., & Marin-Perez, R. (2023). Innovative security and compression for constrained IoT networks. Internet of Things, 24, 100899. https://doi.org/10.1016/j.iot.2023.100899

Fekete, D.L., & Kiss, A. (2023). Toward Building Smart Contract-Based Higher Education Systems Using Zero-Knowledge Ethereum Virtual Machine. Electronics, 12(3), 664. https://doi.org/10.3390/electronics12030664

Huang, M., Zhu, M., Feng, X., Zhang, Z., Tang, T., Guo, X., Chen, T., Liu, H., Sun, L., & Lee, C. (2023). Intelligent cubic-designed piezoelectric node (icupe) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT). ACS nano, 17(7), 6435-6451. https://doi.org/10.1021/acsnano.2c11366

Kanellopoulos, D., Sharma, V.K., Panagiotakopoulos, T., & Kameas, A. (2023). Networking Architectures and Protocols for IoT Applications in Smart Cities: Recent Developments and Perspectives. Electronics, 12(11), 2490. https://doi.org/10.3390/electronics12112490

Karmakonda, K., Das, M.S., & Ravi, G. (2023). An Energy-Efficient Learning Automata and Cluster-Based Routing Algorithm for Wireless Sensor Networks. Contemporary Mathematics, 488-504. https://doi.org/10.37256/cm.4320232654

Kim, H., Kim, H.S., & Bahk, S. (2022). MobiRPL: Adaptive, robust, and RSSI-based mobile routing in low power and lossy networks. Journal of Communications and Networks, 24(3), 365-383. DOI: 10.23919/JCN.2022.000004

Manikandan, A., Venkataramanan, C., & Dhanapal, R. (2023). A score-based link delay aware routing protocol to improve energy optimization in wireless sensor network. Journal of Engineering Research, 100115. https://doi.org/10.1016/j.jer.2023.100115

Mazloom, S., Diamond, B.E., Polychroniadou, A., & Balch, T. (2023). An Efficient Data-Independent Priority Queue and its Application to Dark Pools. Proceedings on Privacy Enhancing Technologies, 2, 5-22. https://doi.org/10.56553/popets-2023-0038

Mezher, M., Alabbas, A.R. & Ilyas, M. (2023). A survey on state of the inter body radio communication channel: Performance and solutions. Transactions on Emerging Telecommunications Technologies, 34(2), e4697. https://doi.org/10.1002/ett.4697

Mishra, S.N., & Khatua, M. (2023). Reliable and Delay Efficient Multi-Path RPL for Mission Critical IoT Applications. IEEE Transactions on Mobile Computing. DOI: 10.1109/TMC.2023.3328346

Mubeen, S., Nikolaidis, P., Didic, A., Pei-Breivold, H., Sandström, K., & Behnam, M. (2017). Delay Mitigation in Offloaded Cloud Controllers in Industrial IoT. In IEEE Access, 5, 4418-30. DOI: 10.1109/ACCESS.2017.2682499

Murali, S., & Jamalipour, A. (2018). Mobility-aware energy-efficient parent selection algorithm for low power and lossy networks. IEEE Internet Things J., 6, 2593–2601. DOI: 10.1109/JIOT.2018.2872443

Onwuegbuzie, I.U., Abd Razak, S., Isnin, I.F., & Anuar, N.B. (2020). Shortest Path Priority-based RPL (SPPB-RPL): The Case of a Smart Campus. In 2020 IEEE Conference on Application, Information and Network Security (AINS)1-6. IEEE. DOI: 10.1109/AINS50155.2020.9315041

Qamar, S., (2023). Optimal sensor network routing with secure network monitoring using deep learning architectures. Neural Computing and Applications, 1-12. https://doi.org/10.1007/s00521-023-08753-0

Sadineni, L., Pilli, E.S., & Battula, R.B. (2023). ProvLink-IoT: A novel provenance model for Link-Layer Forensics in IoT networks. Forensic Science International: Digital Investigation, 46, 301600. https://doi.org/10.1016/j.fsidi.2023.301600

Tyagi, L.K., Kumar, A., Jha, C.K., Rai, A.K., & Narayan, V. (2022b). Energy Efficient Routing Protocol Using Next Cluster Head Selection Process in Two-Level Hierarchy for Wireless Sensor Network. Journal of Pharmaceutical Negative Results, 4772-4783. DOI: https://doi.org/10.47750/pnr.2022.13.S10.578

Tyagi, L.K., Kumar, A., Jha, C.K., Rai, A.K., & Narayan, V., (2022a). Energy Efficient Routing Protocol Using Next Cluster Head Selection Process in Two-Level Hierarchy for Wireless Sensor Network. Journal of Pharmaceutical Negative Results, 4772-4783. DOI: https://doi.org/10.47750/pnr.2022.13.S10.578

Ullah, S., Mohammadani, K.H., Khan, M.A., Ren, Z., Alkanhel, R., Muthanna, A., & Tariq, U. (2022). Position-monitoring-based hybrid routing protocol for 3D UAV-based networks. Drones, 6(11), 327. https://doi.org/10.3390/drones6110327

Urke, A.R., Kure, Ø., & Øvsthus, K. (2023). Autonomous Flow-Based TSCH Scheduling for Heterogeneous Traffic Patterns: Challenges, Design, Simulation and Testbed Evaluation. IEEE Open Journal of the Communications Society. DOI: 10.1109/OJCOMS.2023.3321405

Wang, S.Y., Sun, C.Y., Hsiao, Y.C., & Lin, Y.B. (2023a). Providing Near Per-flow Scheduling in Commodity Switches without Per-Flow Queues. IEEE Access. DOI: 10.1109/ACCESS.2023.3281699

Wang, Z., Jin, Z., Yang, Z., Zhao, W., & Trik, M. (2023b). Increasing efficiency for routing in internet of things using binary gray wolf optimization and fuzzy logic. Journal of King Saud University-Computer and Information Sciences, 35(9), 101732. https://doi.org/10.1016/j.jksuci.2023.101732

Wójcicki, K., Biega?ska, M., Paliwoda, B., & Górna, J. (2022). Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities, A Review. Energies, 15(5), 1806. https://doi.org/10.3390/en15051806

Yudidharma, A., Nathaniel, N., Gimli, T.N., Achmad, S., & Kurniawan, A. (2023). A systematic literature review: Messaging protocols and electronic platforms used in the internet of things for the purpose of building smart homes. Procedia Computer Science, 216, 194-203. https://doi.org/10.1016/j.procs.2022.12.127

Yun, B., Park, D.W., & Lee, S.G. (2023). $ H $-Band Power Amplifiers in 65-nm CMOS by Adopting Output Power Maximized $ G_ {text {max}} $-Core and Transmission Line-Based Zero-Degree Power Combining Networks. IEEE Journal of Solid-State Circuits. DOI: 10.1109/JSSC.2023.3299735

Zhou, L., Wu, D., Chen J., & Dong, Z. (2017). When Computation Hugs Intelligence: Content-Aware Data Processing for Industrial IoT. In IEEE Internet of Things Journal, 1-1. doi: 10.1109/JIOT.2017.2785624.

Downloads

Published

2023-12-10

How to Cite

M, K. P., & G, A. P. (2023). Priority RPL for IOT Based Smart Manufacturing Industries. Journal of Applied Engineering and Technological Science (JAETS), 5(1), 425–438. https://doi.org/10.37385/jaets.v5i1.3247