The Fuel System Modification To Strengthen Achievement And The Prospect Of Utilizing Gasoline Ethanol Blended With Water Injection


  • Wawan Purwanto Universitas Negeri Padang
  • Tung-Kwan Liu
  • Hasan Maksum
  • Ahmad Arif Universitas Negeri Padang
  • Muhammad Yasep Setiawan Universitas Negeri Padang
  • Muhammad Nasir Universitas Negeri Padang



Carburetor, Electronic Fuel Injection, Emission, Modification, Performance


This research proposes a fuel system conversion from a carburetor to an electronic fuel injection (EFI), to save fossil fuels using gasoline-ethanol combined with water injection. Beneficial as an offer for Indonesian motorcycle environmental friendliness in terms of exhaust emissions. The goal of this study is to improve engine performance and accommodate technology for the deployment of ethanol gasoline implementations. The experiment was conducted using fuel with a ration octane number (RON) of 92, gasoline-ethanol was executed up to E25 then applied water injection (Wi). The results show that converting a conventional carburetor to EFI and additional water injection increases engine performance, mileage, and reduces exhaust emissions.


Download data is not yet available.


Amaral, L. V., Santos, N. D. S. A., Roso, V. R., Sebastião, R. de C. de O., & Pujatti, F. J. P. (2021). Effects of gasoline composition on engine performance, exhaust gases and operational costs. Renewable and Sustainable Energy Reviews, 135, 110196.

Asnawi, A., Setiawan, A., Sayuthi, M., Waluyo, T., & Radian, H. (2022). An experimental study on the effects of bioethanol-Gasoline blends on spark-ignition engine performance. Jurnal Polimesin, 20(2), 87–92.

Aydogan, H., Ozcelik, A. E., & Acaroglu, M. (2017). An experimental study on the effects of bioethanol — Gasoline blends on engine performance in a spark ignition engine. International Conference Computing Engineering and Design, 23–26.

Badawy, T., Panithasan, M. S., Turner, J. W. G., Kim, J., Han, D., Lee, J., AlRamadan, A. S., & Chang, J. (2024). Performance and emissions evaluation of a multi-cylinder research engine fueled with ethanol, methanol, gasoline Euro-6, E85, and iso-stoichiometric ternary GEM mixtures operated at lean conditions. Fuel, 363, 130962.

BPS. (2023). Number of Motor Vehicle by Type - Statistical Data - BPS-Statistics Indonesia. BPS Web.

Cabir, B., & Yak?n, A. (2024). Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines. Journal of the Energy Institute, 112, 101483.

Cesur, I., & Uysal, F. (2024). Experimental investigation and artificial neural network-based modelling of thermal barrier engine performance and exhaust emissions for methanol-gasoline blends. Energy, 291, 130393.

Dhande, D. Y. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7(3).

Dhande, D. Y., Sinaga, N., & Dahe, K. B. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7(3), e06380.

Elfasakhany, A. (2015). Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4), 713–719.

Ellyanie, Abidin, Z., Astuti, M., Puspitasari, D., Pangestu, A. P., & Fariz, A. K. (2023). Analysis of Ethanol-Pertalite on Performance and Exhaust Gas Emissions Motorcycle. AIP Conference Proceedings, 2689(1).

Elshenawy, A. A., Abdel Razik, S. M., & Gad, M. S. (2023). Modeling of combustion and emissions behavior on the effect of ethanol–gasoline blends in a four stroke SI engine. Advances in Mechanical Engineering, 15(3).

Farooq, S., & Vinay Kumar, D. (2023). Experimental investigation of gasoline ethanol methanol iso-stoichiometric blends on SI engine. Materials Today: Proceedings.

Hasan, A. O., Al-Rawashdeh, H., Al-Muhtaseb, A. H., Abu-jrai, A., Ahmad, R., & Zeaiter, J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231, 197–203.

Hoang, A. T. (2020a). A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation. In AIP Conference Proceedings (Vol. 2235).

Hoang, A. T. (2020b). Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). In Energy Sources, Part A: Recovery, Utilization and Environmental Effects.

Hoang, A. T., Tran, Q. V., Al-Tawaha, A. R. M. S., Pham, V. V., & Nguyen, X. P. (2019). Comparative analysis on performance and emission characteristics of an in-Vietnam popular 4-stroke motorcycle engine running on biogasoline and mineral gasoline. Renewable Energy Focus, 28, 47–55.

Inbanaathan, P. V., Balasubramanian, D., Nguyen, V. N., Le, V. V., Wae-Hayee, M., R, R., Veza, I., Yukesh, N., Kalam, M. A., Sonthalia, A., & Varuvel, E. G. (2023). Comprehensive study on using hydrogen-gasoline-ethanol blends as flexible fuels in an existing variable speed SI engine. International Journal of Hydrogen Energy, 48(99), 39531–39552.

Iodice, P., Langella, G., & Amoresano, A. (2018). Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Applied Thermal Engineering, 130, 1081–1089.

Ismail, F. B., Al-Bazi, A., & Aboubakr, I. G. (2022). Numerical investigations on the performance and emissions of a turbocharged engine using an ethanol-gasoline blend. Case Studies in Thermal Engineering, 39, 102366.

Kaya, G. (2022). Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine. Fuel, 317, 120917.

Khoa, N. X. (2020). Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine. Applied Energy, 278.

Kirkpatrick, A. T. (2020). Internal Combustion Engines: Applied Thermosciences, Fourth Edition. Internal Combustion Engines: Applied Thermosciences, Fourth Edition, 1–635.

Kumar, A. M. (2020). A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renewable Energy, 146, 1781–1795.

Kumara, R., & Singh, B. (2023). Performance Improvements of Power Converters for High Power Induction Motor Drive. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 100214.

Kunwer, R., Pasupuleti, S. R., Bhurat, S. S., Gugulothu, S. K., & Singh, D. (2022). Effect of ethanol-gasoline blend on spark ignition engine: A mini review. Materials Today: Proceedings, 69, 564–568.

Li, A., Zheng, Z., & Peng, T. (2020). Effect of water injection on the knock, combustion, and emissions of a direct injection gasoline engine. Fuel, 268, 117376.

Li, B., Zhong, F., Wang, R., Jiang, Y., & Chen, Y. (2024). Experimental and numerical study on a SI engine fueled with gasohol and dissociated methanol gas blends at lean conditions. Energy, 292, 130540.

Li, S. H., Wen, Z., Hou, J., Xi, S., Fang, P., Guo, X., Li, Y., Wang, Z., & Li, S. (2022). Effects of Ethanol and Methanol on the Combustion Characteristics of Gasoline with the Revised Variation Disturbance Method. ACS Omega, 7(21), 17797–17810.

Li, Y., Lin, S., Huang, L., & Liu, J. (2024). A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine. Energy, 286, 129683.

Lin, Z., Liu, S., Qi, Y., Chen, Q., & Wang, Z. (2024). Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel. Energy, 289, 129998.

Mohammed, M. K. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25.

Mohammed Shahinsha, N., John, J. A., Singh, K., & Kumar, N. (2023). Reduction in automotive emissions by ethanol blending in SI engine: A review. Materials Today: Proceedings.

Mourad, M., & Mahmoud, K. (2019). Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renewable Energy, 143, 762–771.

Nanlohy, H. Y., Riupassa, H., Mini, M., Taba, H. T., Katjo, B., Nanulaitta, N. J. M., & Yamaguchi, M. (2022). Performance and Emissions Analysis of BE85-Gasoline Blends on Spark Ignition Engine. Automotive Experiences, 5(1), 40–48.

Obhuo, M., Okuma, S. O., & Aziaka, D. S. (2023). The Impact of Compressor Degradation on The Optimized Fleet Compositions, Optimized Thermal Efficiencies, and The Operations & Maintenance Cost of Fleets of a Reheat Engine Running on Associated Gas Fuel. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 618–632.

Örs, ?., Yelbey, S., Gülcan, H. E., Say?n Kul, B., & Ciniviz, M. (2023). Evaluation of detailed combustion, energy and exergy analysis on ethanol-gasoline and methanol-gasoline blends of a spark ignition engine. Fuel, 354, 129340.

Pirmana, V., Salsiah Alisjahbana, A., Yusuf, A. A., Hoekstra, R., & Tukker, A. (2020). Environmental costs assessment for improved environmental-economic account for Indonesia.

Puglia, M., Morselli, N., Iranzo, A., & Elfasakhany, A. (2023). Comparative Analysis of the Engine Performance and Emissions Characteristics Powered by Various Ethanol–Butanol–Gasoline Blends. Processes 2023, Vol. 11, Page 1264, 11(4), 1264.

Purwanto, W., Su, J. C. T., Rochman, M. L., Waluyo, B., Krismadinata, & Arif, A. (2023). Study on the Addition of A Swirling Vane to Spark Ignition Engines Fueled by Gasoline and Gasoline-Ethanol. Automotive Experiences, 6(1), 162–172.

Sakai, S., & Rothamer, D. (2022). Relative particle emission tendencies of 2-methyl-3-buten-2-ol–gasoline, isobutanol–gasoline, and ethanol–gasoline blends from premixed combustion in a spark-ignition engine. Fuel, 324, 124638.

Setiyo, M. (2021). The concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: literature review and bibliometric analysis. In Indonesian Journal of Science and Technology (Vol. 6, Issue 3, pp. 469–490).

Setiyo, M., Saifudin, S., Jamin, A. W., Nugroho, R., & Karmiadji, D. W. (2018). The effect of ethanol on fuel tank corrosion rate. Jurnal Teknologi, 80(6), 2180–3722.

Shetty, S., & Shrinivasa Rao, B. R. (2022). In-cylinder pressure based combustion analysis of cycle-by-cycle variations in a dual spark plug SI engine using ethanol-gasoline blends as a fuel. Materials Today: Proceedings, 52, 780–786.

Sidoarjo, U. M., Putra Permadi, R., & Widodo, E. (2021). The The Effect of Modified Air Filters to Improve Performance of Matic Motorcycles 110 cc. Procedia of Engineering and Life Science, 1(1).

Suresh, D., & Porpatham, E. (2023). Influence of high compression ratio and hydrogen addition on the performance and emissions of a lean burn spark ignition engine fueled by ethanol-gasoline. International Journal of Hydrogen Energy, 48(38), 14433–14448.

Tamam, M. Q. M., Abdullah, N. R., Yahya, W. J., Kadir, H. A., Putrasari, Y., & Ahmad, M. A. (2021). Effects of Ethanol Blending with Methanol-Gasoline fuel on Spark Ignition Engine Performance and Emissions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 83(2), 54–72.

Verma, A., Dugala, N. S., & Singh, S. (2022). Experimental investigations on the performance of SI engine with Ethanol-Premium gasoline blends. Materials Today: Proceedings, 48, 1224–1231.

Woo, S., & Lee, K. (2023). Effect of injection strategy and water content on water emulsion fuel engine for low pollutant compression ignition engines. Fuel, 343, 127809.

Zhao, H. C., Wang, S. B., Yu, T. Z., & Sun, P. (2023). Study on combustion and emissions characteristics of acetone-butanol-Ethanol(ABE)/gasoline premixed fuel in CISI engines. Case Studies in Thermal Engineering, 51, 103591.

Zhou, Z., Lu, C., Tan, Q., Shang, Y., Deng, Y., Liu, H., Song, D., Zhou, X., Zhang, X., & Jiang, X. (2022). Impacts of applying ethanol blended gasoline and evaporation emission control to motor vehicles in a megacity in southwest China. Atmospheric Pollution Research, 13(5), 101378.




How to Cite

Purwanto, W., Liu, T.-K. ., Maksum, H., Arif, A., Setiawan, M. Y., & Nasir, M. (2024). The Fuel System Modification To Strengthen Achievement And The Prospect Of Utilizing Gasoline Ethanol Blended With Water Injection. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 802–812.