Optimized Deep Convolutional Neural Network for the Prediction of Breast Cancer Recurrence
DOI:
https://doi.org/10.37385/jaets.v5i1.3384Keywords:
Breast Cancer, Recurrence, Prediction, Deep Learning, DCNN, ClassificationAbstract
With more than 2.1 million new cases of diagnosis each year, breast cancer is considered to be the most prevalent women disease. Within 10 years, nearly 30% patients who got cured at early-stages experienced cancer recurrence. Recurrence is a crucial aspect of breast cancer behaviour that is inseparably linked to mortality. Despite its importance, the significant proportion of breast cancer datasets rarely include it, which makes research into its prediction more challenging. It is still difficult to predict who will experience a recurrence and who won't, which has implications for the treatment that goes along with it. Clinicians treating breast cancer may be able to avoid ineffective overtreatment if Artificial Intelligence (AI) methods are developed that can forecast the likelihood of breast cancer recurrence. This work proposes a novel automatic breast cancer recurrence classification and prediction system incorporating novel Deep Convolutional Neural Network (DCNN) algorithm. The proposed DCNN model is deployed on Wisconsin Breast Cancer dataset for further evaluation. The role of AI in forecasting recurrence is examined in this work. The experimental results were analysed for various combination of train and validation dataset. The accuracy, precision, recall and F1-score for the proposed DCNN was calculated as 97.63 %, 98.57 %, 96.84 %, 97.89 % respectively.
Downloads
References
Ali, F., El-Sappagh, S., Islam, S. M. R., Kwak, D., Ali, A., Imran, M., & Kwak, K. S. (2020). A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, 63, 208–222. https://doi.org/10.1016/j.inffus.2020.06.008
Alwohaibi, M., Alzaqebah, M., Alotaibi, N. M., Alzahrani, A. M., & Zouch, M. (2022). A hybrid multi-stage learning technique based on brain storming optimization algorithm for breast cancer recurrence prediction. Journal of King Saud University - Computer and Information Sciences, 34(8), 5192–5203. https://doi.org/10.1016/j.jksuci.2021.05.004
Alzu’bi, A., Najadat, H., Doulat, W., Al-Shari, O., & Zhou, L. (2021). Predicting the recurrence of breast cancer using machine learning algorithms. Multimedia Tools and Applications, 80(9), 13787–13800. https://doi.org/10.1007/s11042-020-10448-w
Anderson, S. J., Wapnir, I., Dignam, J. J., Fisher, B., Mamounas, E. P., Jeong, J. H., Geyer, C. E., Wickerham, D. L., Costantino, J. P., & Wolmark, N. (2009). Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in patients treated by breast-conserving therapy in five national surgical adjuvant breast and bowel project protocols of node-negative breast cancer. Journal of Clinical Oncology, 27(15), 2466–2473. https://doi.org/10.1200/JCO.2008.19.8424
Bakre, M. M., Ramkumar, C., Attuluri, A. K., Basavaraj, C., Prakash, C., Buturovic, L., Madhav, L., Naidu, N., Prathima, R., Somashekhar, S. P., Gupta, S., Doval, D. C., & Pegram, M. D. (2019). Clinical validation of an immunohistochemistry-based CanAssist-Breast test for distant recurrence prediction in hormone receptor-positive breast cancer patients. Cancer Medicine, 8(4), 1755–1764. https://doi.org/10.1002/cam4.2049
Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in the chronic disease diagnosis. Journal of Personalized Medicine, 10(2). https://doi.org/10.3390/jpm10020021
Boeri, C., Chiappa, C., Galli, F., De Berardinis, V., Bardelli, L., Carcano, G., & Rovera, F. (2020). Machine Learning techniques in breast cancer prognosis prediction: A primary evaluation. Cancer Medicine, 9(9), 3234–3243. https://doi.org/10.1002/cam4.2811
Cespedes Feliciano, E. M., Kwan, M. L., Kushi, L. H., Chen, W. Y., Weltzien, E. K., Castillo, A. L., Sweeney, C., Bernard, P. S., & Caan, B. J. (2017). Body mass index, PAM50 subtype, recurrence, and survival among patients with nonmetastatic breast cancer. Cancer, 123(13), 2535–2542. https://doi.org/10.1002/cncr.30637
Chang, C. C., & Chen, S. H. (2019). Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors. Frontiers in Genetics, 10(September), 1–6. https://doi.org/10.3389/fgene.2019.0084
Chatterjee, C. C., & Krishna, G. (2019). A novel method for IDC prediction in breast cancer histopathology images using deep residual neural networks. 2019 2nd International Conference on Intelligent Communication and Computational Techniques, ICCT 2019, 95–100. https://doi.org/10.1109/ICCT46177.2019.8969037
Cheung, H. M. C., & Rubin, D. (2021). Challenges and opportunities for artificial intelligence in oncological imaging. Clinical Radiology, 76(10), 728–736. https://doi.org/10.1016/j.crad.2021.03.009
Chouhan, N., Khan, A., Shah, J. Z., Hussnain, M., & Khan, M. W. (2021). Deep convolutional neural network and emotional learning based breast cancer detection using digital mammography. Computers in Biology and Medicine, 132(October 2020), 104318. https://doi.org/10.1016/j.compbiomed.2021.104318
Desai, M., & Shah, M. (2021). An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical EHealth, 4(2021), 1–11. https://doi.org/10.1016/j.ceh.2020.11.002
Gianni, C., Palleschi, M., Merloni, F., Di Menna, G., Sirico, M., Sarti, S., Virga, A., Ulivi, P., Cecconetto, L., Mariotti, M., & De Giorgi, U. (2022). Cell-Free DNA Fragmentomics: A Promising Biomarker for Diagnosis, Prognosis and Prediction of Response in Breast Cancer. International Journal of Molecular Sciences, 23(22). https://doi.org/10.3390/ijms232214197
Guo, J., Fung, B. C. M., Iqbal, F., Kuppen, P. J. K., Tollenaar, R. A. E. M., Mesker, W. E., & Lebrun, J. J. (2017). Revealing determinant factors for early breast cancer recurrence by decision tree. Information Systems Frontiers, 19(6), 1233–1241. https://doi.org/10.1007/s10796-017-9764-0
Gupta, S. R. (2022). Prediction time of breast cancer tumor recurrence using Machine Learning. Cancer Treatment and Research Communications, 32(July), 100602. https://doi.org/10.1016/j.ctarc.2022.100602
Hassan, M. M., Hassan, M. M., Yasmin, F., Khan, M. A. R., Zaman, S., Galibuzzaman, Islam, K. K., & Bairagi, A. K. (2023). A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction. Decision Analytics Journal, 7(May), 100245. https://doi.org/10.1016/j.dajour.2023.100245
Huang, S. C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. Npj Digital Medicine, 3(1). https://doi.org/10.1038/s41746-020-00341-z
Huang, S. H., Loh, J. K., Tsai, J. T., Houg, M. F., & Shi, H. Y. (2017). Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. Chinese Journal of Cancer, 36(1), 1–9. https://doi.org/10.1186/s40880-017-0192-9
Jalal, M. M., Tasnim, Z., & Islam, M. N. (2021). Exploring the Machine Learning Algorithms to Find the Best Features for Predicting the Risk of Cardiovascular Diseases. In Advances in Intelligent Systems and Computing (Vol. 1324, Issue February, pp. 559–569). Springer International Publishing. https://doi.org/10.1007/978-3-030-68154-8_49
Kaggle. (1995). Breast Cancer Wisconsin Dataset, Kaggle. https://www.kaggle.com/uciml/breast-cancer-wisconsin-data.
Khan, S. U., Islam, N., Jan, Z., Ud Din, I., & Rodrigues, J. J. P. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters, 125, 1–6. https://doi.org/10.1016/j.patrec.2019.03.022
Kim, W., Kim, K. S., & Park, R. W. (2016). Nomogram of naive bayesian model for recurrence prediction of breast cancer. Healthcare Informatics Research, 22(2), 89–94. https://doi.org/10.4258/hir.2016.22.2.89
Latchoumi, T. P., Ezhilarasi, T. P., & Balamurugan, K. (2019). Bio-inspired weighed quantum particle swarm optimization and smooth support vector machine ensembles for identification of abnormalities in medical data. SN Applied Sciences, 1(10), 1–10. https://doi.org/10.1007/s42452-019-1179-8
LG, A., & AT, E. (2013). Using Three Machine Learning Techniques for Predicting Breast Cancer Recurrence. Journal of Health & Medical Informatics, 04(02), 2–4. https://doi.org/10.4172/2157-7420.1000124
Li, J. P., Haq, A. U., Din, S. U., Khan, J., Khan, A., & Saboor, A. (2020). Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access, 8(Ml), 107562–107582. https://doi.org/10.1109/ACCESS.2020.3001149
Macías-García, L., Martínez-Ballesteros, M., Luna-Romera, J. M., García-Heredia, J. M., García-Gutiérrez, J., & Riquelme-Santos, J. C. (2020). Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance. Artificial Intelligence in Medicine, 110(November). https://doi.org/10.1016/j.artmed.2020.101976
Magboo, V. P. C., & Magboo, M. S. (2021). Machine learning classifiers on breast cancer recurrences. Procedia Computer Science, 192, 2742–2752. https://doi.org/10.1016/j.procs.2021.09.044
Maniruzzaman, M., Rahman, M. J., Ahammed, B., & Abedin, M. M. (2020). Classification and prediction of diabetes disease using machine learning paradigm. Health Information Science and Systems, 8(1), 1–14. https://doi.org/10.1007/s13755-019-0095-z
Osako, T., Matsuura, M., Yotsumoto, D., Takayama, S., Kaneko, K., Takahashi, M., Shimazu, K., Yoshidome, K., Kuraoka, K., Itakura, M., Tani, M., Ishikawa, T., Ohi, Y., Kinoshita, T., Sato, N., Tsujimoto, M., Nakamura, S., Tsuda, H., Noguchi, S., & Akiyama, F. (2022). A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large-scale, multicenter cohort study. Cancer, 128(10), 1913–1920. https://doi.org/10.1002/cncr.34144
Phan, N. N., Hsu, C. Y., Huang, C. C., Tseng, L. M., & Chuang, E. Y. (2021). Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling. Frontiers in Oncology, 11(October), 1–10. https://doi.org/10.3389/fonc.2021.734015
Quist, J., Taylor, L., Staaf, J., & Grigoriadis, A. (2021). Random forest modelling of high-dimensional mixed-type data for breast cancer classification. Cancers, 13(5), 1–15. https://doi.org/10.3390/cancers13050991
Rabinovici-Cohen, S., Fernández, X. M., Grandal Rejo, B., Hexter, E., Hijano Cubelos, O., Pajula, J., Pölönen, H., Reyal, F., & Rosen-Zvi, M. (2022). Multimodal Prediction of Five-Year Breast Cancer Recurrence in Women Who Receive Neoadjuvant Chemotherapy. Cancers, 14(16). https://doi.org/10.3390/cancers14163848
Ronald CK Chan, Chun Kit Curtis To, Ka Chuen Tom Cheng, Tada Yoshikazu, Lai Ling Amy Yan, G. M. T. (2023). Artificial intelligence in breast cancer histopathology. Histopathology, 82, 198–210. https://doi.org/https://doi.org/10.1111/his.14820
Stephen, O., Sain, M., Maduh, U. J., & Jeong, D. U. (2019). An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of Healthcare Engineering, 2019. https://doi.org/10.1155/2019/4180949
Tufail, A. Bin, Ma, Y. K., Kaabar, M. K. A., Martínez, F., Junejo, A. R., Ullah, I., & Khan, R. (2021). Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/9025470
Wang, H., Li, Y., Khan, S. A., & Luo, Y. (2020). Prediction of breast cancer distant recurrence using natural language processing and knowledge-guided convolutional neural network. Artificial Intelligence in Medicine, 110, 101977. https://doi.org/10.1016/j.artmed.2020.101977
Witteveen, A., Nane, G. F., Vliegen, I. M. H., Siesling, S., & IJzerman, M. J. (2018). Comparison of Logistic Regression and Bayesian Networks for Risk Prediction of Breast Cancer Recurrence. Medical Decision Making, 38(7), 822–833. https://doi.org/10.1177/0272989X18790963
Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzebski, S., Fevry, T., Katsnelson, J., Kim, E., Wolfson, S., Parikh, U., Gaddam, S., Lin, L. L. Y., Ho, K., Weinstein, J. D., Reig, B., Gao, Y., Toth, H., … Geras, K. J. (2020). Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Transactions on Medical Imaging, 39(4), 1184–1194. https://doi.org/10.1109/TMI.2019.2945514
Yang, J., Ju, J., Guo, L., Ji, B., Shi, S., Yang, Z., Gao, S., Yuan, X., Tian, G., Liang, Y., & Yuan, P. (2022). Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Computational and Structural Biotechnology Journal, 20, 333–342. https://doi.org/10.1016/j.csbj.2021.12.028
Zeng, L., Liu, L., Chen, D., Lu, H., Xue, Y., Bi, H., & Yang, W. (2023). The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer. Frontiers in Oncology, 13(March), 1–12. https://doi.org/10.3389/fonc.2023.1117420