Effect of High Temperature Heating on Chemical Compounds in Magnesium Composite Materials


  • Rezza Ruzuqi Politeknik Kelautan dan Perikanan Sorong
  • Eko Tavip Maryanto Universitas Muhammadiyah Sorong




Seawater Battery, Magnesium Composites, Chemical Compound, High Temperatures


The development of magnesium composite-based seawater battery anode technology is actively pursued, especially in its ability to transmit and store electrical energy. However, many overlook the possibility that significant temperature changes during the process may lead to chemical compound alterations, potentially affecting the battery's performance. Therefore, this research examines the changes in chemical compounds in magnesium composite-based seawater battery anodes caused by high temperatures. In this study, the synthesis process of magnesium composite material composed of MgAlSnMn with variations of Manganese (wt.-%) 14.8, 15, 15.2, 15.4, 15.6. Then it was milled for 60 minutes. Next, the materials were pelletized using a manual compacting machine with a diameter and compressive strength of 10 mm and 150 kg/cm2 respectively. After that, all materials were sintered at 7500C with a muffle furnace for 60 minutes. In this study, XRD equipment was utilized to determine chemical compound changes. The results indicate that magnesium composite materials undergo significant chemical compound alterations at high temperatures, including MgO (Magnesium Oxide Periclase), Al18Mg3Mn2, and the remaining Al elements. This could potentially disrupt the performance of seawater batteries when applied. It is hoped that further research will be conducted in the future to enhance the quality and performance of the product.


Download data is not yet available.


Ahmed, M. B., Nofal, M. M., Aziz, S. B., Al-Saeedi, S. I., Brza, M. A., Dannoun, E. M. A., & Murad, A. R. (2022). The study of ion transport parameters associated with dissociated cation using EIS model in solid polymer electrolytes (SPEs) based on PVA host polymer: XRD, FTIR, and dielectric properties. Arabian Journal of Chemistry, 15(11), 104196. https://doi.org/10.1016/j.arabjc.2022.104196

Baeva, M., Loffhagen, D., & Uhrlandt, D. (2019). Unified Non-equilibrium Modelling of Tungsten-Inert Gas Microarcs in Atmospheric Pressure Argon. Plasma Chemistry and Plasma Processing, 39(6), 1359–1378. https://doi.org/10.1007/s11090-019-10020-x

Biswas, R. K., Khan, P., Mukherjee, S., Mukhopadhyay, A. K., Ghosh, J., & Muraleedharan, K. (2018). Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. Journal of Non-Crystalline Solids, 488, 1–9. https://doi.org/10.1016/j.jnoncrysol.2018.02.037

Boukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477

Changizian, P., Zarei-Hanzaki, A., & Roostaei, A. A. (2012). The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects. Materials & Design, 39, 384–389. https://doi.org/10.1016/j.matdes.2012.02.049

Chen, G. H. (2012). Effect of High-Pressure Solution Temperature on Corrosion Resistance of AM60 Magnesium Alloy. Advanced Materials Research, 580, 560–563. https://doi.org/10.4028/www.scientific.net/AMR.580.560

Chubukov, B. A., Palumbo, A. W., Rowe, S. C., Wallace, M. A., Sun, K. Y., & Weimer, A. W. (2018). Design and Fabrication of Pellets for Magnesium Production by Carbothermal Reduction. Metallurgical and Materials Transactions B, 49(5), 2209–2218. https://doi.org/10.1007/s11663-018-1309-5

Deepak, J. R., Arunkumar, T., Ravipati, S. V. S. D., & Varma, S. S. S. K. S. (2021). XRD investigation of biodegradable magnesium rare earth alloy. Materials Today: Proceedings, 47, 4676–4681. https://doi.org/10.1016/j.matpr.2021.05.542

Doumeng, M., Makhlouf, L., Berthet, F., Marsan, O., Delbé, K., Denape, J., & Chabert, F. (2021). A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polymer Testing, 93, 106878. https://doi.org/10.1016/j.polymertesting.2020.106878

Fan, J., Yang, C., & Xu, B. (2012). Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures. Journal of Rare Earths, 30(5), 497–502. https://doi.org/10.1016/S1002-0721(12)60079-9

Fatimah, S., Ragadhita, R., Husaeni, D. F. A., & Nandiyanto, A. B. D. (2021). How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method. ASEAN Journal of Science and Engineering, 2(1), 65–76. https://doi.org/10.17509/ajse.v2i1.37647

Guilliatt, I. F., & Brett, N. H. (1971). Crystallite size and shape relationships in the product-precursor pair MgO-Mg(OH)2. Philosophical Magazine, 23(183), 647–653. https://doi.org/10.1080/14786437108216410

Holder, C. F., & Schaak, R. E. (2019). Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 13(7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157

Li, Q., Xiong, W., Yu, M., Li, J., Liu, L., Zhu, G., Wang, L., Wang, J., Yu, S., & Liu, E. (2022). Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery. Journal of Alloys and Compounds, 891, 161914. https://doi.org/10.1016/j.jallcom.2021.161914

Ma, J., Zhang, Y., Ma, M., Qin, C., Ren, F., & Wang, G. (2020). Corrosion and discharge performance of a magnesium aluminum eutectic alloy as anode for magnesium–air batteries. Corrosion Science, 170, 108695. https://doi.org/10.1016/j.corsci.2020.108695

Maddegalla, A., Mukherjee, A., Blázquez, J. A., Azaceta, E., Leonet, O., Mainar, A. R., Kovalevsky, A., Sharon, D., Martin, J., Sotta, D., Ein?Eli, Y., Aurbach, D., & Noked, M. (2021). AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries. ChemSusChem, 14(21), 4690–4696. https://doi.org/10.1002/cssc.202101323

Moslim, N. A., Ahmad, N., & Kasim, S. R. (2018). XRD Analysis of Calcined Magnesium Substituted Biphasic Calcium Phosphate (Mg-BCP). Journal of Physics: Conference Series, 1082, 012025. https://doi.org/10.1088/1742-6596/1082/1/012025

Mukhopadhyay, N. K., Chang, H. J., Lee, J. Y., & Kim, D. H. (2008). Electron microscopy of an icosahedral phase in a rapidly solidified Al18Mg3Mn2 complex metallic alloy. Scripta Materialia, 59(10), 1119–1122. https://doi.org/10.1016/j.scriptamat.2008.07.024

Nakatsugawa, I., & Chino, Y. (2020). Performance of AZ31 Alloy as Anodes for Primary Magnesium-Air Batteries under High Current Discharge. MATERIALS TRANSACTIONS, 61(1), 200–205. https://doi.org/10.2320/matertrans.MT-M2019259

Powell, A. E., Hodges, J. M., & Schaak, R. E. (2016). Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of Metastable Wurtzite-Type CoS and MnS. Journal of the American Chemical Society, 138(2), 471–474. https://doi.org/10.1021/jacs.5b10624

Pu, Z., Outeiro, J. C., Batista, A. C., Dillon, O. W., Puleo, D. A., & Jawahir, I. S. (2012). Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. International Journal of Machine Tools and Manufacture, 56, 17–27. https://doi.org/10.1016/j.ijmachtools.2011.12.006

Ruzuqi, R., Rudyardjo, M.Si., Drs. D. I., & Zaidan, S.Si., M.Si., Ph.D., A. H. (2021). Synthesis and Characterization of Nickel-Based Superalloy Materials for Manufacturing Aircraft Turbine Blades. Indonesian Applied Physics Letters, 2(2), 49. https://doi.org/10.20473/iapl.v2i2.31557

Sangeetha, M., Mallikarjun, A., Jaipal Reddy, M., & Siva Kumar, J. (2017). SEM, XRD and electrical conductivity studies of PVDF-HFP-LiBF4 –EC plasticized gel polymer electrolyte. 020064. https://doi.org/10.1063/1.4990217

Singh, V. P., Patel, S. K., Ranjan, A., & Kuriachen, B. (2020). Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: A critical review. Journal of Materials Research and Technology, 9(3), 6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008

Sun, C. C., You, A. H., & Teo, L. L. (2022). XRD Measurement for Particle Size Analysis of PMMA Polymer Electrolytes with SiO2. International Journal of Technology, 13(6), 1336. https://doi.org/10.14716/ijtech.v13i6.5927

Terauchi, H., Ohga, T., & Naono, H. (1980). Dehydration in Mg(OH)2. Solid State Communications, 35(11), 895–897. https://doi.org/10.1016/0038-1098(80)91048-0

Tong, F., Chen, X., Wei, S., Malmström, J., Vella, J., & Gao, W. (2021). Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery. Journal of Magnesium and Alloys, 9(6), 1967–1976. https://doi.org/10.1016/j.jma.2021.08.022

Tsoukalou, A., Abdala, P. M., Stoian, D., Huang, X., Willinger, M.-G., Fedorov, A., & Müller, C. R. (2019). Structural Evolution and Dynamics of an In 2 O 3 Catalyst for CO 2 Hydrogenation to Methanol: An Operando XAS-XRD and In Situ TEM Study. Journal of the American Chemical Society, 141(34), 13497–13505. https://doi.org/10.1021/jacs.9b04873

Volkova, E. F., Mostyaev, I. V., Akinina, M. V., & Alikhanyan, A. A. (2021). Effect of High-Temperature Heating on the Structure, Phase Composition, and Properties of Small Stampings Made of a VMD16 Magnesium Alloy. Russian Metallurgy (Metally), 2021(11), 1402–1408. https://doi.org/10.1134/S0036029521110112

Wang, N., Huang, Y., Liu, J., Yang, X., Xie, W., Cai, Q., Zheng, S., & Shi, Z. (2021). AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery. Electrochimica Acta, 378, 138135. https://doi.org/10.1016/j.electacta.2021.138135

Wu, G., Chan, K.-C., Zhu, L., Sun, L., & Lu, J. (2017). Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature, 545(7652), 80–83. https://doi.org/10.1038/nature21691

Xu, T., Yang, Y., Peng, X., Song, J., & Pan, F. (2019). Overview of advancement and development trend on magnesium alloy. Journal of Magnesium and Alloys, 7(3), 536–544. https://doi.org/10.1016/j.jma.2019.08.001

Yan, Z., Wang, D., He, X., Wang, W., Zhang, H., Dong, P., Li, C., Li, Y., Zhou, J., Liu, Z., & Sun, L. (2018). Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Materials Science and Engineering: A, 723, 212–220. https://doi.org/10.1016/j.msea.2018.03.023

Yu, D.-H. (2013). Modeling high-temperature tensile deformation behavior of AZ31B magnesium alloy considering strain effects. Materials & Design, 51, 323–330. https://doi.org/10.1016/j.matdes.2013.04.022

Yu, W., Sun, R., Guo, Z., Wang, Z., He, Y., Lu, G., Chen, P., & Chen, K. (2019). Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application. Applied Surface Science, 464, 708–715. https://doi.org/10.1016/j.apsusc.2018.09.148

Yu, X., Shen, S., Jiang, B., Jiang, Z., Yang, H., & Pan, F. (2016). The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys. Applied Surface Science, 370, 357–363. https://doi.org/10.1016/j.apsusc.2016.02.156

Zhang, H., Jérusalem, A., Salvati, E., Papadaki, C., Fong, K. S., Song, X., & Korsunsky, A. M. (2019). Datasets for multi-scale diffraction analysis (synchrotron XRD and EBSD) of twinning-detwinning during tensile-compressive deformation of AZ31B magnesium alloy samples. Data in Brief, 26, 104423. https://doi.org/10.1016/j.dib.2019.104423

Zhao, H., Bian, P., & Ju, D. (2009). Electrochemical performance of magnesium alloy and its application on the sea water battery. Journal of Environmental Sciences, 21, S88–S91. https://doi.org/10.1016/S1001-0742(09)60045-0

Zheng, T., Hu, Y., Zhang, Y., Yang, S., & Pan, F. (2018). Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Materials & Design, 137, 245–255. https://doi.org/10.1016/j.matdes.2017.10.031




How to Cite

Ruzuqi, R., & Maryanto, E. T. (2024). Effect of High Temperature Heating on Chemical Compounds in Magnesium Composite Materials. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 875–891. https://doi.org/10.37385/jaets.v5i2.3749