Malaria Disease Prediction Based on Convolutional Neural Networks


  • Dhrgam AL Kafaf College of Art and Science, Department of Natural & Applied Sciences, American University of Iraq – Baghdad
  • Noor N. Thamir Ministry of education, General Directorate of Education of Rusafa II, Baghdad, Iraq
  • Samara S. AL-Hadithy Ministry of Education, Karkh First Directorate of Education, Baghdad, Iraq



Convolutional Neural Network, Malaria disease, Computer Aides Detection, Deep Learning


This study delves into the investigation of the efficacy of Convolutional Neural Networks (CNNs) in identifying malaria through the examination of cell images. The dataset employed encompasses a total of 27,558 images, harvested from the renowned Malaria Cell Images Dataset on Kaggle, encompassing cells of diverse nature. The architectonics of the CNN model is meticulously devised, comprising of six blocks and three interconnected blocks, thereby rendering an efficient extraction of features and subsequent classification of the cells. Creative paraphrasing: Various strategies such as dropout, batch normalization, and global average pooling are artfully utilized to refine and fortify the model, ensuring its robustness and adaptability. In order to confront the challenge of diminishing gradient and facilitate the attainment of convergence, the activation function known as Rectified Linear Unit (ReLU) is ingeniously employed. Assessing the efficacy of the model via a perplexity grid produces outcomes. Exhibiting a precision rate of 99.59%, a specificity measure of 99.69%, an Sensitivity of 99.40%, F1 Measurement of 99.44%, and a Precision of 99.48, it showcases its capacity to effectively distinguish betwixt malaria-afflicted cells and unafflicted cells. The focal point of this research highlights the substantial potential of CNNs in facilitating the automated identification of malaria using image analysis. By harnessing their unique architecture and regularization techniques, CNNs have the capability to enhance the results and potentially bring about better outcomes in areas with prevalent cases of malaria.


Download data is not yet available.


Abubakar, A., Ajuji, M., & Yahya, I. U. (2021). Deepfmd: Computational analysis for malaria detection in blood-smear images using deep-learning features. Applied System Innovation, 4(4). doi:10.3390/asi4040082

Aderghal, K., Afdel, K., Benois-Pineau, J., & Catheline, G. (2020). Improving Alzheimer’s stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon, 6(12). doi:10.1016/j.heliyon.2020.e05652

Akil Arsath, J., Suganthi, S., Rakeshwaran, S., & Karthiga, S. (2023). Multimodal Disease Prediction using Machine Learning and Deep Learning Techniques. International Research Journal on Advanced Science Hub, 5(Issue 05S). doi:10.47392/irjash.2023.s027

Albrecht-Schgoer, K., Lackner, P., Schmutzhard, E., & Baier, G. (2022). Cerebral Malaria: Current Clinical and Immunological Aspects. Frontiers in Immunology. doi:10.3389/fimmu.2022.863568

Amin, J., Almas Anjum, M., Ahmad, A., Sharif, M. I., Kadry, S., & Kim, J. (2024). Microscopic parasite malaria classification using best feature selection based on generalized normal distribution optimization. PeerJ Computer Science, 10, e1744.

Barboza, M. F. X., Monteiro, K. H. de C., Rodrigues, I. R., Santos, G. L., Monteiro, W. M., Figueira, E. A. G., … Endo, P. T. (2022). Prediction of malaria using deep learning models: A case study on city clusters in the state of Amazonas, Brazil, from 2003 to 2018. Revista Da Sociedade Brasileira de Medicina Tropical, 55. doi:10.1590/0037-8682-0420-2021

Bui, Q. T., Nguyen, Q. H., Pham, V. M., Pham, M. H., & Tran, A. T. (2019). Understanding spatial variations of malaria in Vietnam using remotely sensed data integrated into GIS and machine learning classifiers. Geocarto International, 34(12). doi:10.1080/10106049.2018.1478890

Chakradeo, K., Titarenko, S., Delves, M. J., & Delves, M. (n.d.). Malaria Parasite Detection Using Deep Learning Methods New Antimalarial agents View project Malaria Detection using Deep Learning View project Malaria Parasite Detection Using Deep Learning Methods. doi:10.5281/zenodo.4569849

Chen, S., Sedghi Gamechi, Z., Dubost, F., van Tulder, G., & de Bruijne, M. (2022). An end-to-end approach to segmentation in medical images with CNN and posterior-CRF. Medical Image Analysis, 76. doi:10.1016/

Deelder, W., Benavente, E. D., Phelan, J., Manko, E., Campino, S., Palla, L., & Clark, T. G. (2021). Using deep learning to identify recent positive selection in malaria parasite sequence data. Malaria Journal, 20(1). doi:10.1186/s12936-021-03788-x

Dunst, J., Kamena, F., & Matuschewski, K. (2017). Cytokines and chemokines in cerebral malaria pathogenesis. Frontiers in Cellular and Infection Microbiology. doi:10.3389/fcimb.2017.00324

Eshetu, T., Taddese, A. A., Tamir, M., & Mekonnen, G. G. (2024). Systematic Review and Meta-Analysis of the Diagnostic Accuracy of Machine Learning and Deep Learning Models to Detect Malaria: A Protocol. Research Square .

Fasihfar, Z., Rokhsati, H., Sadeghsalehi, H., Ghaderzadeh, M., & Gheisari, M. (2024). AI-driven malaria diagnosis: developing a robust model for accurate detection and classification of malaria parasites. Iranian Journal of Blood & Cancer, 15(3), 112–124.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

Gillrie, M. R., Lee, K., Gowda, D. C., Davis, S. P., Monestier, M., Cui, L., … Ho, M. (2012). Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. American Journal of Pathology, 180(3). doi:10.1016/j.ajpath.2011.11.037

Hemachandran, K., Alasiry, A., Marzougui, M., Ganie, S. M., Pise, A. A., Alouane, M. T. H., & Chola, C. (2023). Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease. Diagnostics, 13(3). doi:10.3390/diagnostics13030534

Hossain, M. M., Rahim, M. A., Bahar, A. N., & Rahman, M. M. (2021). Automatic malaria disease detection from blood cell images using the variational quantum circuit. Informatics in Medicine Unlocked, 26.

Iradukunda, O., Che, H., Uwineza, J., Bayingana, J. Y., Bin-Imam, M. S., & Niyonzima, I. (2019). Malaria Disease Prediction Based on Machine Learning. In ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019. doi:10.1109/ICSIDP47821.2019.9173011

Kumar Gourisaria, M., Das, S., Sharma, R., Rautaray, S. S., & Pandey, M. (2020). A Deep Learning Model for Malaria Disease Detection and Analysis using Deep Convolutional Neural Networks. International Journal on Emerging Technologies, 11(2), 699–704.

Kumar, A., Sarkar, S., & Pradhan, C. (2020). Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers. In Studies in Big Data (Vol. 68). doi:10.1007/978-3-030-33966-1_11

Leão, L., Puty, B., Dolabela, M. F., Povoa, M. M., Né, Y. G. D. S., Eiró, L. G., … Lima, R. R. (2020). Association of cerebral malaria and TNF-? levels: A systematic review. BMC Infectious Diseases, 20(1). doi:10.1186/s12879-020-05107-2

Luzolo, A. L., & Ngoyi, D. M. (2019). Cerebral malaria. Brain Research Bulletin. doi:10.1016/j.brainresbull.2019.01.010

Mansoor, A., Bagci, U., Foster, B., Xu, Z., Papadakis, G. Z., Folio, L. R., … Mollura, D. J. (2015). Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends. Radiographics, 35(4). doi:10.1148/rg.2015140232

Maqsood, A., Farid, M. S., Khan, M. H., & Grzegorzek, M. (2021). Deep malaria parasite detection in thin blood smear microscopic images. Applied Sciences (Switzerland), 11(5). doi:10.3390/app11052284

Mariki, M., Mkoba, E., & Mduma, N. (2022). Combining Clinical Symptoms and Patient Features for Malaria Diagnosis: Machine Learning Approach. Applied Artificial Intelligence, 36(1).

Masud, M., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., Muhammad, G., … Shorfuzzaman, M. (2020). Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application. Wireless Communications and Mobile Computing, 2020. doi:10.1155/2020/8895429

Meena Preethi, B., Gowri, P., Karthikeyan, C., Dharshini, B., Parameshvar, M., & Gokul, S. (2024). Design of Malaria Detection Using Ensemble Techniques-A Combination of Alexnet and Densenet Algorithm. In Proceedings of the 1st International Conference on Artificial Intelligence, Communication, IoT, Data Engineering and Security, IACIDS.

Negi, A., Kumar, K., & Chauhan, P. (2021). Deep Learning-Based Image Classifier for Malaria Cell Detection. In Machine Learning for Healthcare Applications. doi:10.1002/9781119792611.ch12

Nkiruka, O., Prasad, R., & Clement, O. (2021). Prediction of malaria incidence using climate variability and machine learning. Informatics in Medicine Unlocked, 22. doi:10.1016/j.imu.2020.100508

Ojo, M. O., & Zahid, A. (2022). Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects. Sensors (Basel, Switzerland). doi:10.3390/s22207965

Organization, W. H. (2016). Malaria Microscopy Quality Assurance Manual. WHO Press (Vol. 2).

Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., & Thoma, G. (2018). Image analysis and machine learning for detecting malaria. Translational Research. doi:10.1016/j.trsl.2017.12.004

Purwono, Ma’arif, A., Rahmaniar, W., Fathurrahman, H. I. K., Frisky, A. Z. K., & Haq, Q. M. U. (2022). Understanding of Convolutional Neural Network (CNN): A Review. International Journal of Robotics and Control Systems, 2(4). doi:10.31763/ijrcs.v2i4.888

Rajaraman, S., Jaeger, S., & Antani, S. K. (2019). Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ, 7. doi:10.7717/PEERJ.6977

Reis, P., Estato, V., & de Castro Faria Neto, H. C. (2020). Cerebral malaria. In Infections of the Central Nervous System: Pathology and Genetics. doi:10.1002/9781119467748.ch45

Sahoo, P. K., Eswaran, K., Sandhya, Y., & Kumar Sahoo, P. (2020). Malaria Disease Detection Using Deep Learning Technique.

Samee, N. A., Atteia, G., Meshoul, S., Al-antari, M. A., & Kadah, Y. M. (2022). Deep Learning Cascaded Feature Selection Framework for Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach. Mathematics, 10(19). doi:10.3390/math10193631

Sandhya, Y., Sahoo, P. K., & Eswaran, K. (2020). Malaria Disease Detection Using Deep Learning Technique. Int. J. Adv. Sci. Technol, 29, 7736-7745.?

Schiess, N., Villabona-Rueda, A., Cottier, K. E., Huether, K., Chipeta, J., & Stins, M. F. (2020). Pathophysiology and neurologic sequelae of cerebral malaria. Malaria Journal. doi:10.1186/s12936-020-03336-z

Schmidt, R. M., Schneider, F., & Hennig, P. (2021). Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers. In Proceedings of Machine Learning Research (Vol. 139).

Shekar Gautham, S. Revathy, & Goud Ediga Karthick. (2021). Proceedings of the 4th International Conference on Trends in Electronics and Informatics (ICOEI 2020)?: 15-17, June 2020 (pp. 2–6).

SOYLU, E. (2022). A Deep Transfer Learning-Based Comparative Study for Detection of Malaria Disease. Sakarya University Journal of Computer and Information Sciences, 5(3). doi:10.35377/saucis...1197119

Spoorthi B, & Aravinda, C V. (2022). Image Analysis for Detecting Malaria Cell Using Otsu Thresholding and Machine Learning Models. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. doi:10.32628/cseit2283111

Sriporn, K., Tsai, C. F., Tsai, C. E., & Wang, P. (2020). Analyzing malaria disease using effective deep learning approach. Diagnostics, 10(10). doi:10.3390/diagnostics10100744

Takahashi, R., & Kajikawa, Y. (2017). Computer-aided diagnosis: A survey with bibliometric analysis. International Journal of Medical Informatics. doi:10.1016/j.ijmedinf.2017.02.004

Yebasse, M., Cheoi, K. J., & Ko, J. (2023). Malaria Disease Cell Classification With Highlighting Small Infected Regions. IEEE Access, 11. doi:10.1109/ACCESS.2023.3245025




How to Cite

AL Kafaf, D., Thamir, N. N., & AL-Hadithy, S. S. (2024). Malaria Disease Prediction Based on Convolutional Neural Networks. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 1165–1181.