Preparation, Synthesis and Characterization of La(1-x)Sr(x)MnO3 Alloy
DOI:
https://doi.org/10.37385/jaets.v5i2.3962Keywords:
Powder, Crystallographic orientation, Magnetic, Heat capacitance, MorphologyAbstract
Magnetic particles have been used for hyperthermia by inserting ferromagnetic material into tumor tissue. La(1-x)Sr(x)MnO3 is one of the best candidates for hyperthermia due to higher magnetic at ambient temperature and their Curie temperature easily adjusted. This research synthesized La(1-x)Sr(x)MnO3 using the ball milling technique. Several heat treatments were also conducted after ball milling processing. Various investigations, including SEM-EDS, XRD, DSC, and VSM, were conducted. LaMnO3 has a hexagonal structure, which has the space group R -3 c. From the diffraction pattern seen in LaMnO3 and La0.9Sr0.1MnO3 seen at angles 32.376 and 32.706, it looks separate like the database diffraction pattern. In La0.9Sr0.1MnO3, these two peaks are seen to be increasingly separated. In contrast to the diffraction patterns of La0.7Sr0.3MnO3 and La0.5Sr0.5MnO3 at an angle of 32.376, there is a decrease in intensity. The specific heat capacity of the alloy with Sr substitution of 0.3 has a greater value than that without substitution and the lowest occurs in the alloy with Sr substitution of 0.1. The magnetization value for Sr substitution is 0.3 higher than for other alloys.
Downloads
References
Aina, V., Bergandi, L., Lusvardi, G., Malavasi, G., Imrie, F. E., Gibson, I. R., Cerrato, G., & Ghigo, D. (2013). Sr-containing hydroxyapatite: Morphologies of HA crystals and bioactivity on osteoblast cells. Materials Science and Engineering C, 33(3), 1132–1142. https://doi.org/10.1016/j.msec.2012.12.005
Apostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2018). La1?xSrxMnO3 Nanoparticles for Magnetic Hyperthermia. Physica Status Solidi (B) Basic Research, 255(6), 1–15. https://doi.org/10.1002/pssb.201700587
Bai, Y., Zhou, J., Gui, Z., & Li, L. (2005). The effect of Sr substitution on phase formation and magnetic properties of Y-type hexagonal ferrite. Journal of the American Ceramic Society, 88(2), 318–323. https://doi.org/10.1111/j.1551-2916.2005.00080.x
Bork, A. H., Povoden-Karadeniz, E., & Rupp, J. L. M. (2017). Modeling Thermochemical Solar-to-Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La,Sr)MnO3. Advanced Energy Materials, 7(1). https://doi.org/10.1002/aenm.201601086
Campillo, G., Osorio, J., Arnache, O., Gil, A., Beltrán, J. J., & Dorkis, L. (2019). Grain Size Reduction Effect on Structural and Magnetic Properties in La1-xSrxMnO3 (x = 0.3 y 0.4) by Mechanical Ball Milling. Journal of Physics: Conference Series, 1247(1), 0–6. https://doi.org/10.1088/1742-6596/1247/1/012015
Cheng, Y., Weng, S., Yu, L., Zhu, N., Yang, M., & Yuan, Y. (2019). The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integrative Cancer Therapies, 18. https://doi.org/10.1177/1534735419876345
Das, T., Das, B. K., Parashar, K., Kumar, R., Choudhary, H. K., Anupama, A. V., Sahoo, B., Sahoo, P. K., & Parashar, S. K. S. (2017). Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. Journal of Materials Science: Materials in Electronics, 28(18), 13587–13595. https://doi.org/10.1007/s10854-017-7198-6
Duan, Z., Cui, Y., Shi, X., Wei, J., Ren, P., & Zhao, G. (2016). Facile fabrication of micro-patterned LSMO films with unchanged magnetic properties by photosensitive sol-gel method on LaAlO3 substrates. Ceramics International, 42(12), 14100–14106. https://doi.org/10.1016/j.ceramint.2016.06.021
Epherre, R., Pepin, C., Penin, N., Duguet, E., Mornet, S., Pollert, E., & Goglio, G. (2011). Evidence of non-stoichiometry effects in nanometric manganite perovskites: Influence on the magnetic ordering temperature. Journal of Materials Chemistry, 21(38), 14990–14998. https://doi.org/10.1039/c1jm12137e
Figueroa, G. C., Olmos, Ó. A., Garcés, A. G., Vélez, J. A. O., Beltrán, J. J., Miranda, E. B., & Castillo, R. (2014). Influence of Ball Milling Process on Structural and Magnetic Properties of OF La0.7Sr0.3MnO3 Manganite. Revista EIA, 11, 31–38.
Flores Urquizo, I. A., Sanchez Correa, H., Montes De Oca Ayala, F. T., Rivera De La Rosa, J., & Hernandez Garcia, T. C. (2020). Synthesis of La-Sr-Mn-O and La-Sr-Ca-Mn-O Perovskites through Solution Combustion Using Urea at Fuel Deficient Conditions. IEEE Transactions on Nanobioscience, 19(2), 183–191. https://doi.org/10.1109/TNB.2019.2963703
Jadhav, S. V., Lee, S. H., Nikam, D. S., Bohara, R. A., Pawar, S. H., & Yu, Y. S. (2017). Studies on enhanced colloidal stability and heating ability of glycine functionalized LSMO nanoparticles for cancer hyperthermia therapy. New Journal of Chemistry, 41(4), 1598–1608. https://doi.org/10.1039/c6nj03384a
Khlopkin, M. N., Panova, G. K., Shikov, A. A., Sinyavski?, V. F., & Shulyatev, D. A. (2000). Heat capacity of La1-xSrxMnO3 single crystals in different magnetic states. Physics of the Solid State, 42(1), 114–119. https://doi.org/10.1134/1.1131177
Konopacki, M., J?drzejczak-Silicka, M., Szyma?ska, K., Mijowska, E., & Rakoczy, R. (2021). Effect of rotating magnetic field on ferromagnetic structures used in hyperthermia. Journal of Magnetism and Magnetic Materials, 518(September 2020), 167418. https://doi.org/10.1016/j.jmmm.2020.167418
Manh, D. H., Ngoc Nha, T. T., Hong Phong, L. T., Nam, P. H., Thanh, T. D., & Phong, P. T. (2023). Determination of the crystalline size of hexagonal La1?xSrxMnO3 (x = 0.3) nanoparticles from X-ray diffraction - a comparative study. RSC Advances, 13(36), 25007–25017. https://doi.org/10.1039/d3ra04018f
Manh, D. H., Phong, P. T., Nam, P. H., Tung, D. K., Phuc, N. X., & Lee, I. J. (2014). Structural and magnetic study of La0.7Sr0.3MnO 3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Physica B: Condensed Matter, 444, 94–102. https://doi.org/10.1016/j.physb.2014.03.025
Miller, K. D., Nogueira, L., Devasia, T., Mariotto, A. B., Yabroff, K. R., Jemal, A., Kramer, J., & Siegel, R. L. (2022). Cancer treatment and survivorship statistics, 2022. CA: A Cancer Journal for Clinicians, 72(5), 409–436. https://doi.org/10.3322/caac.21731
Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., Jemal, A., Kramer, J. L., & Siegel, R. L. (2019). Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians, 69(5), 363–385. https://doi.org/10.3322/caac.21565
Ouhaibi, A., Ghamnia, M., Dahamni, M. A., Heresanu, V., Fauquet, C., & Tonneau, D. (2018). The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. Journal of Science: Advanced Materials and Devices, 3(1), 29–36. https://doi.org/10.1016/j.jsamd.2018.01.004
Ridha, N. J., Yunus, W. M. M., Halim, S. A., Talib, Z. A., Al-Asfoor, F. K. M., & Primus, W. C. (2009). Effect of Sr Substitution on Structure and Thermal Diffusivity ofBa1-xSrxTiO3 Ceramic. American Journal of Engineering and Applied Sciences, 2(4), 661–664. https://doi.org/10.3844/ajeassp.2009.661.664
Talaat, A., Alonso, J., Zhukova, V., Garaio, E., García, J. A., Srikanth, H., Phan, M. H., & Zhukov, A. (2016). Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Scientific Reports, 6(December), 1–6. https://doi.org/10.1038/srep39300
Wang, B., Chan, K. F., Yu, J., Wang, Q., Yang, L., Chiu, P. W. Y., & Zhang, L. (2018). Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Advanced Functional Materials, 28(25), 1–12. https://doi.org/10.1002/adfm.201705701
Wang, M., Cheng, L., Huang, L., Pan, S., Yao, Q., Hu, C., Liang, Q., & Zhou, H. (2021). Effect of Sr doped the YFeO3 rare earth ortho-ferrite on structure, magnetic properties, and microwave absorption performance. Ceramics International, 47(24), 34159–34169. https://doi.org/10.1016/j.ceramint.2021.08.325
Wang, Y., Li, Q., Zhang, C., & Li, B. (2009). Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe12O19 microtubules prepared by sol-gel method. Journal of Magnetism and Magnetic Materials, 321(19), 3368–3372. https://doi.org/10.1016/j.jmmm.2009.05.066
Yagawa, Y., Tanigawa, K., Kobayashi, Y., & Yamamoto, M. (2017). Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. Journal of Cancer Metastasis and Treatment, 3(10), 218. https://doi.org/10.20517/2394-4722.2017.35
Yi, G. Y., Kim, M. J., Kim, H. I., Park, J., & Baek, S. H. (2022). Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants, 11(4). https://doi.org/10.3390/antiox11040625