Attacks Detection in Internet of Things Using Machine Learning Techniques: A Review

Authors

  • Amer Dawood Saleem University of Baghdad
  • Amer Abdulmajeed Abdulrahman University of Baghdad

DOI:

https://doi.org/10.37385/jaets.v6i1.4878

Keywords:

IoT Devices, Machine Learning, Security Attacks, Deep Learning, Intrusion Detection Systems

Abstract

The proliferation of IoT devices across sectors such as home automation, business, healthcare, and transportation has led to the generation of vast amounts of sensitive data. This widespread adoption has introduced significant security challenges and vulnerabilities. This study aims to analyze and evaluate machine learning (ML) and deep learning (DL) models for detecting malicious activities in IoT networks, with a focus on improving cybersecurity measures. We conducted a comprehensive review of various ML and DL models, including Random Forest, Decision Tree, HTA-GAN, Hybrid CNN-LSTM, and SVM. The study also includes an evaluation of the datasets used for identifying harmful data, ensuring effective detection of large-scale attacks in IoT ecosystems. Our findings indicate that these models enhance IoT security by deploying efficient intrusion detection systems (IDS) using reliable, large-scale datasets. The study highlights the performance of these models in balancing security and resource management, given the constraints of IoT devices.ML and DL approaches offer significant security benefits for IoT networks, despite the challenges associated with their implementation. The study underscores the importance of future research to address these challenges and further improve IoT security. The results provide valuable insights into the application of ML/DL models in IoT security, contributing to both theoretical knowledge and practical solutions for enhancing cybersecurity in IoT ecosystems.

Downloads

Download data is not yet available.

References

Abdulrahman, A. A., & Ibrahem, M. K. (2021). Intrusion detection system using data stream classification. Iraqi Journal of Science, 62(1), 319–328. https://doi.org/10.24996/ijs.2021.62.1.30

Ahmad, R., Alsmadi, I., Alhamdani, W., & Tawalbeh, L. (2022a). A comprehensive deep learning benchmark for IoT IDS. Computers and Security, 114. https://doi.org/10.1016/j.cose.2021.102588

Ahmad, R., Alsmadi, I., Alhamdani, W., & Tawalbeh, L. (2022b). Towards building data analytics benchmarks for IoT intrusion detection. Cluster Computing, 25(3), 2125–2141. https://doi.org/10.1007/s10586-021-03388-z

Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., & Janicke, H. (2018). A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-based Models. http://arxiv.org/abs/1812.09059

Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications Surveys and Tutorials, 22(3), 1646–1685. https://doi.org/10.1109/COMST.2020.2988293

Al-Hadhrami, Y., & Hussain, F. K. (2021a). DDoS attacks in IoT networks: a comprehensive systematic literature review. World Wide Web, 24(3), 971–1001. https://doi.org/10.1007/s11280-020-00855-2

Al-Hadhrami, Y., & Hussain, F. K. (2021b). DDoS attacks in IoT networks: a comprehensive systematic literature review. World Wide Web, 24(3), 971–1001. https://doi.org/10.1007/s11280-020-00855-2

Ali, Z., Mahmood, A., Khatoon, S., Alhakami, W., Ullah, S. S., Iqbal, J., & Hussain, S. (2023). A Generic Internet of Things (IoT) Middleware for Smart City Applications. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010743

Alissa, K., Alyas, T., Zafar, K., Abbas, Q., Tabassum, N., & Sakib, S. (2022). Botnet Attack Detection in IoT Using Machine Learning. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/4515642

Alotaibi, A. I., & Oracevic, A. (2023). Context-Aware Security in the Internet of Things: What We Know and Where We are Going. 2023 International Symposium on Networks, Computers and Communications (ISNCC), 1–8. https://doi.org/10.1109/ISNCC58260.2023.10323735

Alqahtani, H., Sarker, I. H., Kalim, A., Minhaz Hossain, S. M., Ikhlaq, S., & Hossain, S. (2020). Cyber intrusion detection using machine learning classification techniques. Communications in Computer and Information Science, 1235 CCIS, 121–131. https://doi.org/10.1007/978-981-15-6648-6_10

Al-Yaseen, W. L., Othman, Z. A., & Nazri, M. Z. A. (2017). Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system. Expert Systems with Applications, 67, 296–303. https://doi.org/10.1016/j.eswa.2016.09.041

Anthi, E., Williams, L., Slowinska, M., Theodorakopoulos, G., & Burnap, P. (2019). A Supervised Intrusion Detection System for Smart Home IoT Devices. IEEE Internet of Things Journal, 6(5), 9042–9053. https://doi.org/10.1109/JIOT.2019.2926365

Anwer, M., Umer Farooq, M., & Mahmood Khan, S. (2021). Attack Detection in IoT using Machine Learning. Engineering, Technology & Applied Science Research, 11(3), 7273-7278.

Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., & Wahab, A. (2020). A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics, 9(7), 1177. https://doi.org/10.3390/electronics9071177

Bhuiyan, M. N., Rahman, M. M., Billah, M. M., & Saha, D. (2021). Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet of Things Journal, 8(13), 10474–10498. https://doi.org/10.1109/JIOT.2021.3062630

Burhan, H. M., Attea, B. A., Abbood, A. D., Abbas, M. N., & Al-Ani, M. (2021). Evolutionary multi-objective set cover problem for task allocation in the Internet of Things. Applied Soft Computing, 102. https://doi.org/10.1016/j.asoc.2021.107097

Butun, I., Osterberg, P., & Song, H. (2020). Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Communications Surveys and Tutorials, 22(1), 616–644. https://doi.org/10.1109/COMST.2019.2953364

Chakrabarti, S., Saha, H. N. (2019). University of Nevada, Institute of Electrical and Electronics Engineers. Region 1, Institute of Electrical and Electronics Engineers. Region 6, IEEE-USA, & Institute of Electrical and Electronics Engineers. (n.d.-a). 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC)?: 7th-9th January, 2019, University of Nevada, Las Vegas, NV, USA.

Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J., Xia, Y., & Zhao, Z. (2022). Effectively Detecting Operational Anomalies In Large-Scale IoT Data Infrastructures By Using A GAN-Based Predictive Model. Computer Journal, 65(11), 2909–2925. https://doi.org/10.1093/comjnl/bxac085

Chen, Y. W., Sheu, J. P., Kuo, Y. C., & Van Cuong, N. (2020, June). Design and implementation of IoT DDoS attacks detection system based on machine learning. In 2020 European Conference on Networks and Communications (EuCNC) (pp. 122-127). IEEE.

Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. In Future Generation Computer Systems (Vol. 78, pp. 544–546). Elsevier B.V. https://doi.org/10.1016/j.future.2017.07.060

Costa, J., Dessai, N., Gaonkar, S., Aswale, S., & Shetgaonkar, P. (2020). Iot-botnet detection using long short-term memory recurrent neural network. Int. J. Eng. Res, 9(8), 531-536.

Fadhil, M. S., Farhan, A. K., & Fadhil, M. N. (2021). A lightweight aes algorithm implementation for secure iot environment. Iraqi Journal of Science, 62(8), 2759–2770. https://doi.org/10.24996/ijs.2021.62.8.29

Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50. https://doi.org/10.1016/j.jisa.2019.102419

Gatea, M. J., & Hameed, S. M. (2022). An Internet of Things Botnet Detection Model Using Regression Analysis and Linear Discrimination Analysis. Iraqi Journal of Science, 63(10), 4534–4546. https://doi.org/10.24996/ijs.2022.63.10.36

Gharkan, D. K., & Abdulrahman, A. A. (2023). Construct an efficient distributed denial of service attack detection system based on data mining techniques. Indonesian Journal of Electrical Engineering and Computer Science, 29(1), 591–597. https://doi.org/10.11591/ijeecs.v29.i1.pp591-597

Hinnefeld, J. H., Cooman, P., Mammo, N., & Deese, R. (2018). Evaluating Fairness Metrics in the Presence of Dataset Bias. http://arxiv.org/abs/1809.09245

Hussien, Z. K., & Dhannoon, B. N. (2020a). Anomaly detection approach based on deep neural network and dropout. Baghdad Science Journal, 17(2), 701–709. https://doi.org/10.21123/bsj.2020.17.2(SI).0701

Jalawkhan, M. S., & Mustafa, T. K. (2021). Anomaly Detection in Flight Data Using the Naïve Bayes Classifier. 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM), 26–30. https://doi.org/10.1109/ICCITM53167.2021.9677655

Kadhm, M. S., Ayad, H., & Mohammed, M. J. (2021). Palmprint recognition system based on proposed features extraction and (c5. 0) decision tree, k-nearest neighbour (knn) classification approaches. J. Eng. Sci. Technol, 16(1), 816-831.

Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 28, 1051–1058. https://doi.org/10.1007/s00521-016-2418-1

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1). https://doi.org/10.1186/s42400-019-0038-7

Larriva-Novo, X., Vega-Barbas, M., Villagrá, V. A., Rivera, D., Álvarez-Campana, M., & Berrocal, J. (2020). Efficient distributed preprocessing model for machine learning-based anomaly detection over large-scale cybersecurity datasets. Applied Sciences (Switzerland), 10(10). https://doi.org/10.3390/app10103430

Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008

Liu, W., Zou, P., Jiang, D., Quan, X., & Dai, H. (2022). Zoning of reservoir water temperature field based on K-means clustering algorithm. Journal of Hydrology: Regional Studies, 44. https://doi.org/10.1016/j.ejrh.2022.101239

Lv, Z., & Singh, A. K. (2021). Big Data Analysis of Internet of Things System. ACM Transactions on Internet Technology, 21(2). https://doi.org/10.1145/3389250

Mahesh, B. (2018). Machine Learning Algorithms-A Review. International Journal of Science and Research (IJSR), 9(1), 381-386. https://doi.org/10.21275/ART20203995

Mishra, N., & Pandya, S. (2021). Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. IEEE Access, 9, 59353-59377. https://doi.org/10.1109/ACCESS.2021.3073408

Moussa, M. M., & Alazzawi, L. (2020). Cyber Attacks Detection based on Deep Learning for Cloud-Dew Computing in Automotive IoT Applications. Proceedings - 2020 IEEE International Conference on Smart Cloud, SmartCloud 2020, 55–61. https://doi.org/10.1109/SmartCloud49737.2020.00019

Musleh, A. S., Chen, G., & Dong, Z. Y. (2020). A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE Transactions on Smart Grid, 11(3), 2218–2234. https://doi.org/10.1109/TSG.2019.2949998

Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., & Ghorbani, A. A. (2023). CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment. Sensors, 23(13). https://doi.org/10.3390/s23135941

Oudah, M. S., & Maolood, A. T. (2023). IoT-Key Agreement Protocol Based on The Lowest Work-Load Versions of The Elliptic Curve Diffie-Hellman. Iraqi Journal of Science, 64(8), 4198–4207. https://doi.org/10.24996/ijs.2023.64.8.39

Roy, B., & Cheung, H. (2018). A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-Term Memory Recurrent Neural Network; A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-Term Memory Recurrent Neural Network. In 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

Sadaf, K., & Sultana, J. (2020). Intrusion detection based on autoencoder and isolation forest in fog computing. IEEE Access, 8, 167059–167068. https://doi.org/10.1109/ACCESS.2020.3022855

Sahu, A. K., Sharma, S., Tanveer, M., & Raja, R. (2021). Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146–154. https://doi.org/10.1016/j.comcom.2021.05.024

Shafiq, M., Tian, Z., Sun, Y., Du, X., & Guizani, M. (2020). Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Generation Computer Systems, 107, 433–442. https://doi.org/10.1016/j.future.2020.02.017

Singh, A., Payal, A., & Bharti, S. (2019). A walkthrough of the emerging IoT paradigm: Visualizing inside functionalities, key features, and open issues. Journal of Network and Computer Applications, 143, 111-151. https://doi.org/10.1016/j.jnca.2019.06.013

Sriavstava, R., Singh, P., & Chhabra, H. (2020). Review on cyber security intrusion detection: Using methods of machine learning and data mining. Internet of Things and Big Data Applications: Recent Advances and Challenges, 121-132. https://doi.org/10.1007/978-3-030-39119-5_8

Taherdoost, H. (2023). Security and internet of things: benefits, challenges, and future perspectives. Electronics, 12(8), 1901. https://doi.org/10.3390/electronics12081901

Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications, 161. https://doi.org/10.1016/j.jnca.2020.102630

Tharewal, S., Ashfaque, M. W., Banu, S. S., Uma, P., Hassen, S. M., & Shabaz, M. (2022). Intrusion Detection System for Industrial Internet of Things Based on Deep Reinforcement Learning. Wireless Communications and Mobile Computing, 2022(1), 9023719. https://doi.org/10.1155/2022/9023719

Yang, W., Johnstone, M. N., Sikos, L. F., & Wang, S. (2020). Security and Forensics in the Internet of Things: Research Advances and Challenges. Proceedings - 2020 Workshop on Emerging Technologies for Security in IoT, ETSecIoT 2020, 12–17. https://doi.org/10.1109/ETSecIoT50046.2020.00007

Downloads

Published

2024-12-15

How to Cite

Saleem, A. D., & Abdulrahman, A. A. (2024). Attacks Detection in Internet of Things Using Machine Learning Techniques: A Review. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 684–703. https://doi.org/10.37385/jaets.v6i1.4878