Morphology of 925 Silver Powder Particles Produced From Gas Atomization
DOI:
https://doi.org/10.37385/jaets.v5i2.4891Keywords:
Gas Atomization, Close Coupling, 925 Silver, Particle Morphology, SEMAbstract
In order to examine the impact of metal water temperature and gas flow rate on the production of 925 silver alloy powder via closed-coupled nozzle and gas atomization process with nitrogen gas as the production medium, and since the morphology of the powder particles could not account for the influence of these variables, the aim was to comprehend and propose a new approach for a general framework for studying the influence of such factors. As a consequence, an investigation was conducted into the impact of these two variables on the morphology, which was characterized by roundness values. Particle size and distribution information can be conveyed to facilitate interpretation. According to the results of the experiment, the gas flow rate and metal water temperature influence the particle morphology in terms of particle size and distribution with respect to roundness. The particle size distribution of metal powders is more restricted and the particle roundness increases. This is due to the fact that the particle morphology plays a critical role in determining which metal powder particles are suitable for forming metal powder workpieces via various production methods. The gas flow rate and metal water temperature influence the particle size distribution, roundness value, and significant size of 925 silver alloy powder.
Downloads
References
Abbireddy, C. O., & Clayton, C. R. (2009). A review of modern particle sizing methods. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(4), 193-201. https://doi.org/10.1680/geng.2009.162.4.193
Baitimerov, R., Lykov, P., Zherebtsov, D., Radionova, L., Shultc, A., & Prashanth, K. G. (2018). Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting. Materials, 11(5), 742. https://doi.org/10.3390/ma11050742
Bao, Q., Yang, Y., Wen, X., Guo, L., & Guo, Z. (2021). The preparation of spherical metal powders using the high-temperature remelting spheroidization technology. Materials & Design, 199, 109382. https://doi.org/10.1016/j.matdes.2020.109382
Beckers, D., Ellendt, N., Fritsching, U., & Uhlenwinkel, V. (2020). Impact of process flow conditions on particle morphology in metal powder production via gas atomization. Advanced Powder Technology, 31(1), 300-311. https://doi.org/10.1016/j.apt.2019.10.022
Both, E. M., Boom, R. M., & Schutyser, M. A. I. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519-524. https://doi: 10.1016/j.powtec.2020.01.001
Cacace, S., Boccadoro, M., & Semeraro, Q. (2023). Investigation on the effect of the gas-to-metal ratio on powder properties and PBF-LB/M processability. Progress in Additive Manufacturing, 1-16. https://doi.org/10.1007/s40964-023-00490-z
DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
Esteban, L. B., Shrimpton, J., & Ganapathisubramani, B. (2019). Study of the circularity effect on drag of disk-like particles. International Journal of Multiphase Flow, 110, 189-197. https://doi.org/10.1016/j.ijmultiphaseflow.2018.09.012
Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., ... & Li, Z. (2020). Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 20(2), 915-929. https://doi.org/10.5194/acp-20-915-2020
Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., & Freeman, T. (2012). Effect of particle shape and size on flow properties of lactose powders. Particuology, 10(2), 203-208. https://doi.org/10.1016/j.partic.2011.11.003
Giganto, S., Martínez-Pellitero, S., Cuesta, E., Meana, V. M., & Barreiro, J. (2020). Analysis of modern optical inspection systems for parts manufactured by selective laser melting. Sensors, 20(11), 3202. https://doi.org/10.3390/s20113202
Grace, J. R., & Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology, 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006
Guo, J., Zhou, S., Cai, M., Zhao, J., Song, W., Zhao, W., ... & Wang, X. (2020). Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. Atmospheric Chemistry and Physics, 20(12), 7595-7615. https://doi.org/10.5194/acp-20-7595-2020
Guzman, J., de Moura Nobre, R., Rodrigues Júnior, D. L., de Morais, W. A., Nunes, E. R., Bayerlein, D. L., ... & Landgraf, F. J. (2021). Comparing spherical and irregularly shaped powders in laser powder bed fusion of Nb47Ti alloy. Journal of Materials Engineering and Performance, 30(9), 6557-6567. https://doi.org/10.1007/s11665-021-05916-9
Hejduk, A., Czajka, S., & Lulek, J. (2021). Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. Powder Technology, 387, 494-508. https://doi.org/10.1016/j.powtec.2021.03.063
Hu, W., Campuzano-Jost, P., Day, D. A., Nault, B. A., Park, T., Lee, T., ... & Jimenez, J. L. (2020). Ambient quantification and size distributions for organic aerosol in aerosol mass spectrometers with the new capture vaporizer. ACS Earth and Space Chemistry, 4(5), 676-689. https://doi.org/10.1021/acsearthspacechem.9b00310
Hu, Z., Nagarajan, B., Song, X., Huang, R., Zhai, W., & Wei, J. (2019). Formation of SS316L single tracks in micro selective laser melting: surface, geometry, and defects. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/9451406
Jargalsaikhan, B., Uranchimeg, K., Bor, A., Kim, K. S., & Choi, H. (2024). Particle morphology control for spherical powder fabrication using the ball milling process with DEM simulation. Particuology, 90, 41-50. https://doi.org/10.1016/j.partic.2023.11.019
Kalman, H. (2022). Effect of particle shape on void fraction. Powder Technology, 407, 117665. https://doi.org/10.1016/j.powtec.2022.117665
Kassym, K., & Perveen, A. (2020). Atomization processes of metal powders for 3D printing. Materials today: proceedings, 26, 1727-1733. https://doi.org/10.1016/j.matpr.2020.02.364
Kawsuk, M., Wannasri, S., & Torsakul, S. (2024). 925 Silver Alloy For Jewelry Manufacturing Using Additive Manufacturing, Part 1: Oxide On Metal Powder Surface. Journal of Southwest Jiaotong University, 59(1), . https://doi.org/10.35741/issn.0258-2724.59.1.13
Li, X. G., Zhu, Q., Shu, S., Fan, J. Z., & Zhang, S. M. (2019). Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder technology, 356, 759-768. https://doi.org/10.1016/j.powtec.2019.09.023
Li, X., Guo, B., Yu, X., Yang, C., Zhou, S., Cui, S., ... & Li, W. (2024). Particle morphology dependence of the mechanical and electrical properties in the in-situ graphene reinforced Cu matrix composites. Composites Part A: Applied Science and Manufacturing, 179, 108032. https://doi.org/10.1016/j.compositesa.2024.108032
Lu, H., Guo, X., Jin, Y., & Gong, X. (2018). Effect of moisture on flowability of pulverized coal. Chemical Engineering Research and Design, 133, 326-334. https://doi.org/10.1016/j.cherd.2018.03.023.
Macri, D., Chirone, R., Salehi, H., Sofia, D., Materazzi, M., Barletta, D., ... & Poletto, M. (2020). Characterization of the bulk flow properties of industrial powders from shear tests. Processes, 8(5), 540. https://doi.org/10.3390/pr8050540
Malý, M., Höller, C., Skalon, M., Meier, B., Koutný, D., Pichler, R., ... & Paloušek, D. (2019). Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti6Al4V processed by selective laser melting. Materials, 12(6), 930. https://doi.org/10.3390/ma12060930
Mathias, L. E., Pinotti, V. E., Batistão, B. F., Rojas-Arias, N., Figueira, G., Andreoli, A. F., & Gargarella, P. (2024). Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification. Journal of Materials Research, 39(1), 19-47. https://doi.org/10.1557/s43578-023-01271-8
Mellin, P., Rashidi, M., Fischer, M., Nyborg, L., Marchetti, L., Hulme-Smith, C., ... & Strondl, A. (2020). Moisture in metal powder and its implication for processability in L-PBF and elsewhere. Berg-und Huttenmännische Monatshefte (BHM), 166(1), 33-39. https://doi.org/10.1007/s00501-020-01070-2
Mitterlehner, M., Danninger, H., Gierl-Mayer, C., Gschiel, H., Martinez, C., Tomisser, M., ... & Benigni, C. (2021). Comparative evaluation of characterization methods for powders used in additive manufacturing. Journal of Materials Engineering and Performance, 30(9), 7019-7034. https://doi.org/10.1007/s11665-021-06113-4
Motas, J. G., Gorji, N. E., Nedelcu, D., Brabazon, D., & Quadrini, F. (2021). XPS, SEM, DSC and nanoindentation characterization of silver nanoparticle-coated biopolymer pellets. Applied Sciences, 11(16), 7706. https://doi.org/10.3390/app11167706
Msetra, Z., Khitouni, N., Suñol, J. J., Khitouni, M., & Chemingui, M. (2021). Characterization and thermal analysis of new amorphous Co60Fe18Ta8B14 alloy produced by mechanical alloying. Materials Letters, 292, 129532. https://doi.org/10.1016/j.matlet.2021.129532
Nagahashi, Y., Takeuchi, H., Grace, J. R., & Asako, Y. (2023). Circulation and separation of binary solids in connected fluidized beds. Powder Technology, 428, 118874. https://doi.org/10.1016/j.powtec.2023.118874
Nasr, G. G., Yule, A. J., & Bendig, L. (2013). Industrial sprays and atomization: design, analysis and applications. Springer Science & Business Media.
Ruinan, G. U., WONG, K., & Ming, Y. A. N. (2020). Laser additive manufacturing of typical highly reflective materials——gold, silver and copper. Scientia Sinica (Physica, Mechanica and Astronomica), 50(3), 44-57. https://doi.org/10.1360/SSPMA-2019-0267
Spierings, A. B., Dawson, K., Uggowitzer, P. J., & Wegener, K. (2018). Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc-and Zr-modified Al-Mg alloys. Materials & Design, 140, 134-143. https://doi.org/10.1016/j.matdes.2017.11.053
Urionabarrenetxea, E., Avello, A., Rivas, A., & Martín, J. M. (2021). Experimental study of the influence of operational and geometric variables on the powders produced by close-coupled gas atomisation. Materials & Design, 199, 109441. https://doi.org/10.1016/j.matdes.2020.109441
Vock, S., Klöden, B., Kirchner, A., Weißgärber, T., & Kieback, B. (2019). Powders for powder bed fusion: a review. Progress in Additive Manufacturing, 4, 383-397. https://doi.org/10.1007/s40964-019-00078-6
Williams, R., Bilton, M., Harrison, N., & Fox, P. (2021). The impact of oxidised powder particles on the microstructure and mechanical properties of Ti-6Al-4 V processed by laser powder bed fusion. Additive Manufacturing, 46, 102181. https://doi.org/10.1016/j.addma.2021.102181
Wu, C., Zhang, S., Han, J., Zhang, C., & Kong, F. (2023). Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements. Metals, 13(4), 646. https://doi.org/10.3390/met13040646
Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y., & Yang, S. (2019). Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Materials & Design, 162, 394-404. https://doi.org/10.1016/j.matdes.2018.12.007
Zheng, B., Lin, Y., Zhou, Y., & Lavernia, E. J. (2009). Gas atomization of amorphous aluminum powder: Part II. Experimental investigation. Metallurgical and Materials Transactions B, 40, 995-1004. https://doi.org/10.1007/s11663-009-9277-4
Zhu, H., Li, Y., Li, B., Zhang, Z., & Qiu, C. (2018). Effects of low-temperature tempering on microstructure and properties of the laser-cladded AISI 420 martensitic stainless steel coating. Coatings, 8(12), 451. https://doi.org/10.3390/coatings8120451
Zhu, X., Liu, W., Zhang, H., Zhang, H., & Zhu, J. (2024). Narrowing particle size distributions to enhance powder coating performance by improved classifying. Powder Technology, 435, 119443. https://doi.org/10.1016/j.powtec.2024.119443