Investigating Tensile Strength in SLA 3D Printing Enhancement Through Experimentation and Finite Element Analysis

Authors

  • Siwasit Pitjamit Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna Tak
  • Norrapon Vichiansan Multidisciplinary Center, Faculty of Engineering, Chiang Mai University, 50200, Thailand
  • Parida Jewpanya Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna Tak, 41/1 Paholayothin road , Mai Ngam , Muang, Tak 63000
  • Pinit Nuangpirom Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 128 Huay Kaew Road, Muang, Chiang Mai 50300
  • Pakpoom Jaichomphu Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna Tak, 41/1 Paholayothin road , Mai Ngam , Muang, Tak 63000
  • Komgrit Leksakul Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
  • Pattarawadee Poolperm Industrial Engineering Program, School of Engineering, Sripatum University, Phahonythin, Chatuchak, Bangkok,10900, Thailand

DOI:

https://doi.org/10.37385/jaets.v6i1.5119

Keywords:

SLA 3D Printing, Tensile Strength, Printing Process Parameters, Finite Element Analysis

Abstract

This study aims to optimize tensile strength in Stereolithography (SLA) 3D printing by investigating the effects of print orientation and layer orientation on mechanical properties. Employing a multilevel factorial design, we systematically analyzed various print andlayer orientations using both experimental and computational methods. The experimental component, performed with an Instron 5566 machine, identified a print orientation of 22.5 degrees and side orientations as optimal, achieving a tensile strength of 72.01 MPa. Computational simulations using ANSYS software supported these findings, showing a close correlation between experimental and simulated results. This research not only advances theoretical understanding of SLA 3D printing processes but also offers practical insights for optimizing tensile strength in manufacturing applications. By integrating experimental and finite element analysis (FEA) results, which predicted a maximum stress of 71.97 MPa under a 686 N load, the study contributes valuable knowledge for enhancing additive manufacturing practices and informs future research on parameter optimization

Downloads

Download data is not yet available.

References

Ahmed, I., Sullivan, K., & Priye, A. (2022). Multi-resin masked stereolithography (MSLA) 3D printing for rapid and inexpensive prototyping of microfluidic chips with integrated functional components. Biosensors, 12(8), 652-664.

Almeida, R., Börret, R., & Rimkus, W. (2020). Simulation of the elastic properties of 3D printed plastic tension rods using Fused Deposition Modeling (FDM). International Refereed Journal of Engineering and Science (IRJES), 18-21.

Aravind Shanmugasundaram, S., Razmi, J., Mian, M. J., & Ladani, L. (2020). Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis. Materials, 13(11), 2496.

Arriaga, A., Lazkano, J. M., Pagaldai, R., Zaldua, A. M., Hernandez, R., Atxurra, R., ... & Abecia, R. (2007). Finite-element analysis of quasi-static characterisation tests in thermoplastic materials: Experimental and numerical analysis results correlation with ANSYS. Polymer Testing, 26(3), 284-305.

Asif, M., Ramezani, M., Khan, K. A., Khan, M. A., & Aw, K. C. (2019). Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite. Comptes Rendus Mécanique, 347(9), 615-625.

Braileanu, P. I., Calin, A., Dobrescu, T. G., & Pascu, N. E. (n.d.). Comparative Examination of Friction Between Additive Manufactured Plastics and Steel Surface. Materiale Plastice, 60(3).

Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., Reverte, J. M., & Becar, J. P. (2019). Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers, 11(5), 799.

Cosmi, F., & Dal Maso, A. (2020). A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Materials Today: Proceedings, 32, 194-201.

Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R. B., Rodriguez, C. A., & Roman-Flores, A. (2019). Characterization of the mechanical properties of FFF structures and materials: A review on the experimental, computational and theoretical approaches. Materials, 12(6), 895.

De Marzi, A., Vibrante, M., Bottin, M., & Franchin, G. (2023). Development of robot assisted hybrid additive manufacturing technology for the freeform fabrication of lattice structures. Additive Manufacturing, 66, 103456.

Dezaki, M. L., & Mohd Ariffin, M. K. A. (2020). The effects of combined infill patterns on mechanical properties in fdm process. Polymers, 12(12), 2792.

Doungkeaw, K., Suttipong, P., Kungwankrai, P., Muengto, S., Thavornyutikarn, B., & Tungtrongpairog, J. (2023). Recycling of iron oxide waste by carothermic reduction to utilize in FDM 3D printing materials. Journal of Metals, Materials and Minerals, 33(2), 156-161.

Dzogbewu, T. C. (2020). Laser powder bed fusion of Ti6Al4V lattice structures and their applications. Journal of Metals, Materials and Minerals, 30(4), 68-78.

ElMaraghy, H., Monostori, L., Schuh, G., & ElMaraghy, W. (2021). Evolution and future of manufacturing systems. CIRP Annals, 70(2), 635-658.

Ertugrul, I., Ulkir, O., Ersoy, S., & Ragulskis, M. (2023). Additive Manufactured Strain Sensor Using Stereolithography Method with Photopolymer Material. Polymers, 15(4), 991.

Fayazfar, H., Salarian, M., Rogalsky, A., Sarker, D., Russo, P., Paserin, V., ... & Toyserkani, E. (2018). A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Materials & Design, 144, 98-128.

Fernández-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D printing and additive manufacturing, 3(3), 183-192.

Farkas, A. Z., Galatanu, S. V., & Nagib, R. (2023). The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers, 15(5), 1113.

Ghidini, T., Grasso, M., Gumpinger, J., Makaya, A., & Colosimo, B. M. (2023). Additive manufacturing in the new space economy: Current achievements and future perspectives. Progress in Aerospace Sciences, 100959.

Giannopoulos, G. I., & Georgantzinos, S. K. (2021). A tunable metamaterial joint for mechanical shock applications inspired by carbon nanotubes. Applied Sciences, 11(23), 11139.

Harris, M., Potgieter, J., Archer, R., & Arif, K. M. (2019). Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: A review of recent developments. Materials, 12(10), 1664.

Hozdi?, E. (2024). Characterization and Comparative Analysis of Mechanical Parameters of FDM-and SLA-Printed ABS Materials. Applied Sciences, 14(2), 649.

Jirk?, P., Urban, J., Müller, M., Kolá?, V., Chandan, V., Svobodová, J., ... & Kytyr, D. (2023). Evaluation of mechanical properties and filler interaction in the field of SLA polymeric additive manufacturing. Materials, 16(14), 4955.

Kafle, A., Luis, E., Silwal, R., Pan, H. M., Shrestha, P. L., & Bastola, A. K. (2021). 3D/4D Printing of polymers: Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers, 13(18), 3101.

Khadilkar, A., Wang, J., & Rai, R. (2019). Deep Learning–Based Stress Prediction for Bottom-Up SLA 3D Printing Process. The International Journal of Advanced Manufacturing Technology, 102, 2555-2569.

Lalegani Dezaki, M., & Mohd Ariffin, M. K. A. (2020). The effects of combined infill patterns on mechanical properties in fdm process. Polymers, 12(12), 2792.

Mar?avina, L., V?lean, C., M?rghita?, M., Linul, E., Razavi, N., & Berto, F. (2022). Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens. Engineering Fracture Mechanics, 274, 108766.

Martín-Montal, J., Pernas-Sánchez, J., & Varas, D. (2021). Experimental characterization framework for SLA additive manufacturing materials. Polymers, 13(7), 1147.

Nazir, A., Gokcekaya, O., Billah, K. M. M., Ertugrul, O., Jiang, J., Sun, J., ... & Koç, M. (2023). Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D Printing of materials and cellular metamaterials. Materials & Design, 111661.

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.

Pham, T. Q. D., Hoang, T. V., Van Tran, X., Pham, Q. T., Fetni, S., Duchêne, L., ... & Klein, T. (2023). Multi-material 3D Printing for the Fabrication of Lightweight Structures Using FDM, SLA, and HP-MJF Additive Manufacturing Technologies. Materials, 16(10), 3720

Pontes, A. J., Marques, P., & Sousa, F. S. (2019). Mechanical characterization of polymeric samples produced by fused filament fabrication. Journal of Polymer Engineering, 39(8), 717-724.

Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. (2018). FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157-166.

Rao, Y., Wu, S., Yang, Y., & He, Y. (2020). Investigating the impact of printing pattern on mechanical properties of stereolithography-printed polymers. Polymers, 12(4), 776.

Reddy, K. M., & Sudhakar, K. (2022). Mechanical characterization and investigation of 3D-printed functional prototypes of FDM-based ABS/PP blends. Journal of Thermoplastic Composite Materials, 36(3), 449-469.

Saidy, A. A., Mian, A. H., Fadly, D., Elwazri, A. M., & Al-Saleh, M. H. (2022). Investigation of the mechanical properties of 3D-printed composite parts using fused deposition modeling (FDM) technology. Polymer Composites, 43(5), 2163-2175.

Sahin, M., & Karabulut, Y. (2023). Investigation of 3D printing parameters in terms of mechanical properties in PLA and PETG materials. Journal of Materials Research and Technology, 23, 1-16.

Salmi, M., & Akda?, A. (2023). Mechanical characterization of 3D-printed polyethylene terephthalate glycol (PETG) structures. Materials, 16(3), 1081.

Sánchez-Sánchez, A., Saldana-Robles, A., Peña-Parás, L., Saucedo-Muñoz, M. L., & Rodríguez, C. A. (2019). Influence of process parameters on tensile mechanical properties of specimens manufactured via Fused Filament Fabrication. Materials, 12(23), 3856.

Scalet, G., Dal Ferrante, L., Galassi, C., & Pavia, F. (2023). Additive manufacturing of piezoelectric sensors and actuators: A review of the methods and the applications. Sensors, 23(4), 1987.

Simonofsky, A. T., Markandan, K., Soman, R., & Lewis, J. A. (2021). Direct ink writing of architected structures: Materials, processes, and applications. Advanced Functional Materials, 31(45), 2106543.

Sun, Z., Wu, H., Wang, X., & Chen, Q. (2022). Investigation of the mechanical properties of photopolymer resins used in SLA 3D printing technology. Materials, 15(7), 2674.

Szymaszek, P., Tomal, W., ?wiergosz, T., Kami?ska-Borek, I., Popielarz, R., & Ortyl, J. (2023). Review of Quantitative and Qualitative Methods for Monitoring Photopolymerization Reactions. Polymer Chemistry, 14(15), 1690-1717.

Truong, Q., & Park, H. W. (2020). Effects of build orientation and printing parameters on the mechanical properties of PLA material by FDM. Materials Science Forum, 1005, 95-100.

Wang, S., Ma, Y., Deng, Z., Zhang, K., & Dai, S. (2020). Implementation of an Elastoplastic Constitutive Model for 3D-Printed Materials Fabricated by Stereolithography. Additive Manufacturing, 33, 101104.

Wu, J., & Yan, C. (2022). Advances in Stereolithography-Based Additive Manufacturing for Bone Tissue Engineering. Materials, 15(9), 3006.

Xiong, Y., Kuang, Z., Ding, Q., & Wang, L. (2022). 3D printing of hydrogel-based materials for biomedical applications: A review. Biomaterials, 280, 121289.

Zhang, F., Zhang, Y., Fang, G., & Wen, P. (2021). Review on 3D printing of shape memory polymer composites: Applications, properties and performances. Composites Part B: Engineering, 217, 108858.

Zhang, Y., Liu, Q., & Tang, D. (2023). 3D printing of conductive polymer nanocomposites: A review of recent developments and future perspectives. Composites Part A: Applied Science and Manufacturing, 154, 106825.

Downloads

Published

2024-12-15

How to Cite

Pitjamit, S., Vichiansan, N. ., Jewpanya, P., Nuangpirom, P., Jaichomphu, P., Leksakul, K. ., & Poolperm, P. . (2024). Investigating Tensile Strength in SLA 3D Printing Enhancement Through Experimentation and Finite Element Analysis. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 206–224. https://doi.org/10.37385/jaets.v6i1.5119