Finite Element Analysis of SS316L-Based Five-Hole Plate Implant For Fibula Reconstruction

Authors

  • Nanang Qosim
  • Zakki Fuadi Emzain Politeknik Negeri Malang
  • AM. Mufarrih Politeknik Negeri Malang
  • Ratna Monasari Politeknik Negeri Malang
  • Ratna Monasari Politeknik Negeri Malang
  • Fataa Kusumattaqiin Politeknik Negeri Samarinda
  • Rangga E. Santoso Cranfield University

DOI:

https://doi.org/10.37385/jaets.v4i1.533

Keywords:

Plate, Implant, Finite Element Method, Von Mises, Fibula, SS316L

Abstract

This study analyzed the design performance of SS316L-based plate implant for fibula restoration using a Finite Element Analysis approach. The simulated model design has dimensions of 35 x 5 x 1.5 mm and five holes with 2-3 configuration. The results of the bending test simulation showed that the values for both displacement and Von Mises stress that occurred (0.008 mm and 116 MPa of each) were still considerably below the yield stress of the SS316L material. The same results were also shown in the tensile test simulation, although the clamping setting on the plate was changed on the other side. From this finite element analysis approach, the SS316L-based five-hole plate implant design has a fairly good strength performance as a fibular bone-implant restoration product.

Downloads

Download data is not yet available.

References

Akinwamide, S. O., Venter, A., Akinribide, O. J., Babalola, B. J., Andrews, A., & Olubambi, P. A. (2022). Residual stress impact on corrosion behaviour of hot and cold worked 2205 duplex stainless steel: A study by X-ray diffraction analysis. Engineering Failure Analysis, 131, 105913. https://doi.org/10.1016/j.engfailanal.2021.105913

Berrone, S., Scialò, S., & Vicini, F. (2019). Parallel Meshing, Discretization, and Computation of Flow in Massive Discrete Fracture Networks. SIAM Journal on Scientific Computing, 41(4), C317–C338. https://doi.org/10.1137/18M1228736

Cao, Y., Zhang, Y., Huang, L., & Huang, X. (2019). The impact of plate length, fibula integrity and plate placement on tibial shaft fixation stability: A finite element study. Journal of Orthopaedic Surgery and Research, 14(1), 52. https://doi.org/10.1186/s13018-019-1088-y

Dhib, Z., Guermazi, N., Gaspérini, M., & Haddar, N. (2016). Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding. Materials Science and Engineering: A, 656, 130–141. https://doi.org/10.1016/j.msea.2015.12.088

Dursun, G., Ibekwe, S., Li, G., Mensah, P., Joshi, G., & Jerro, D. (2020). Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Materials Today: Proceedings, 26, 387–393. https://doi.org/10.1016/j.matpr.2019.12.061

Emzain, Z. F., Amrullah, U. S., Mufarrih, A., Qosim, N., & Herlambang, Y. D. (2021). Design optimization of sleeve finger splint model using Finite Element Analysis. 19, 6.

Godbole, N., Yadav, S., Ramachandran, M., & Belemkar, S. (2015). A Review on Surface Treatment of Stainless Steel Orthopedic Implants. Int J Pharm Sci Rev Res, 33, 5.

Huang, X., Zhi, Z., Yu, B., & Chen, F. (2015). Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: A comparative finite element study. Journal of Orthopaedic Surgery and Research, 10(1), 182. https://doi.org/10.1186/s13018-015-0325-2

Koh, Y.-G., Lee, J.-A., Lee, H.-Y., Chun, H.-J., Kim, H.-J., & Kang, K.-T. (2019). Design optimization of high tibial osteotomy plates using finite element analysis for improved biomechanical effect. Journal of Orthopaedic Surgery and Research, 14(1), 219. https://doi.org/10.1186/s13018-019-1269-8

Kong, D., Dong, C., Ni, X., Zhang, L., Luo, H., Li, R., Wang, L., Man, C., & Li, X. (2020). The passivity of selective laser melted 316L stainless steel. Applied Surface Science, 504, 144495. https://doi.org/10.1016/j.apsusc.2019.144495

Lu, C., Fan, Y., Yu, G., Chen, H., Sinclair, J., & Fan, Y. (2022). Asymptomatic foot and ankle structural injuries: A 3D imaging and finite element analysis of elite fencers. BMC Sports Science, Medicine and Rehabilitation, 14(1), 50. https://doi.org/10.1186/s13102-022-00444-y

Mojarad Shafiee, B., Torkaman, R., Mahmoudi, M., Emadi, R., Derakhshan, M., Karamian, E., & Tavangarian, F. (2020). Surface Modification of 316L SS Implants by Applying Bioglass/Gelatin/Polycaprolactone Composite Coatings for Biomedical Applications. Coatings, 10(12), 1220. https://doi.org/10.3390/coatings10121220

Pathote, D., Jaiswal, D., Singh, V., & Behera, C. K. (2022). Optimization of electrochemical corrosion behavior of 316L stainless steel as an effective biomaterial for orthopedic applications. Materials Today: Proceedings, 57, 265–269. https://doi.org/10.1016/j.matpr.2022.02.501

Pratik S. Thakre. (2021). Finite element analysis of tibia bone. International Journal of Biomedical Engineering and Technology, 35(4), 318–339. https://doi.org/10.1504/IJBET.2021.114812

Qosim, N., Monasari, R., Emzain, Z. F., Hakim, L., & Sai’in, A. (2020). Finite Element Analysis of Miniplate for Post-Fracture Finger Rehabilitation Device. Journal of Applied Engineering and Technological Science (JAETS), 2(1), 21–26. https://doi.org/10.37385/jaets.v2i1.160

Qosim, N., Supriadi, S., Whulanza, Y., & Saragih, A. S. (2018). Development Of Ti-6al-4v Based-Miniplate Manufactured By Electrical Discharge Machining As Maxillofacial Implant. Journal of Fundamental and Applied Sciences, 10(3S), 765–775.

Ren, Z., Heuer, A. H., & Ernst, F. (2019). Ultrahigh-strength AISI-316 austenitic stainless steel foils through concentrated interstitial carbon. Acta Materialia, 167, 231–240. https://doi.org/10.1016/j.actamat.2019.01.018

Steiner, J. A., Ferguson, S. J., & van Lenthe, G. H. (2015). Computational analysis of primary implant stability in trabecular bone. Journal of Biomechanics, 48(5), 807–815. https://doi.org/10.1016/j.jbiomech.2014.12.008

Taberner, M., van Dyk, N., Allen, T., Richter, C., Howarth, C., Scott, S., & Cohen, D. D. (2019). Physical preparation and return to sport of the football player with a tibia-fibula fracture: Applying the ‘control-chaos continuum.’ BMJ Open Sport & Exercise Medicine, 5(1), e000639. https://doi.org/10.1136/bmjsem-2019-000639

Tavelli, M., & Dumbser, M. (2016). A staggered space–time discontinuous Galerkin method for the three-dimensional incompressible Navier–Stokes equations on unstructured tetrahedral meshes. Journal of Computational Physics, 319, 294–323. https://doi.org/10.1016/j.jcp.2016.05.009

Wang, Y., Qi, E., Zhang, X., Xue, L., Wang, L., & Tian, J. (2021). A finite element analysis of relationship between fracture, implant and tibial tunnel. Scientific Reports, 11(1), 1781. https://doi.org/10.1038/s41598-021-81401-6

Werner, B. C., Mack, C., Franke, K., Barnes, R. P., Warren, R. F., & Rodeo, S. A. (2017). Distal Fibula Fractures in National Football League Athletes. Orthopaedic Journal of Sports Medicine, 5(9), 232596711772651. https://doi.org/10.1177/2325967117726515

Wong, C., Mikkelsen, P., Hansen, L. B., Darvann, T., & Gebuhr, P. (2010). Finite element analysis of tibial fractures. DANISH MEDICAL BULLETIN, 4.

Zahn, R. K., Frey, S., Jakubietz, R. G., Jakubietz, M. G., Doht, S., Schneider, P., Waschke, J., & Meffert, R. H. (2012). A contoured locking plate for distal fibular fractures in osteoporotic bone: A biomechanical cadaver study. Injury, 43(6), 718–725. https://doi.org/10.1016/j.injury.2011.07.009

Zaki, P., Khakimov, S., Hess, J., & Hennrikus, W. (2020). Femur, Tibia, and Fibula Fractures Secondary to Youth Soccer: A Descriptive Study and Review of the Literature. Cureus. https://doi.org/10.7759/cureus.8185

Downloads

Published

2022-08-15

How to Cite

Qosim, N., Emzain, Z. F., Mufarrih, A., Monasari, R., Monasari, R., Kusumattaqiin, F., & Santoso, R. E. (2022). Finite Element Analysis of SS316L-Based Five-Hole Plate Implant For Fibula Reconstruction. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 16–23. https://doi.org/10.37385/jaets.v4i1.533