Performance of Corrosion Behavior of Commercial Magnesium Alloy Anode Electrode in Seawater-Powered Lamps
DOI:
https://doi.org/10.37385/jaets.v6i1.5340Keywords:
Magnesium Alloy Anode, Seawater Batteries, Corrosion Behavior, Salinity Variation, Potentiodynamic TestingAbstract
The development of environmentally friendly alternative technologies, such as seawater batteries, is increasingly important in addressing energy needs. This study aims to analyze the corrosion behavior of a magnesium alloy anode electrode used in seawater batteries with varying salinity levels. Five commercial anode electrode samples were prepared, each immersed in a salt solution with different concentrations: 14g, 16g, 18g, 20g, and 22g in 380 ml of distilled water. Potentiodynamic testing was conducted to measure the corrosion potential (Ecorr), corrosion current (Icorr), and corrosion rate. The results showed that an increase in salt concentration significantly increased the corrosion rate. The sample with the highest salt concentration (22g) produced a corrosion potential of 1.5419 Volts, a corrosion current of 0.0010 Amps/cm², and a corrosion rate of 12.5850 mm/year. These findings indicate that the corrosion rate increases with higher salinity. The study concludes that there is a positive correlation between salinity and corrosion rate, with future research expected to focus on additional treatments to improve electrode performance.
Downloads
References
AbdelHamid, A. A., Mendoza-Garcia, A., & Ying, J. Y. (2022). Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy, 93, 106860. https://doi.org/10.1016/j.nanoen.2021.106860
Abedini, A., Shamskhani, R., Ebrahimi Valmoozi, A. A., & Seyyed Afghahi, S. S. (2023). Effect of aging on corrosion and discharge performance of AZ63-1.5RE alloy as anode in magnesium-dissolved oxygen seawater batteries. Journal of Power Sources, 581, 233405. https://doi.org/10.1016/j.jpowsour.2023.233405
Abedini, A., Valmoozi, A. A. E., Seyyed Afghahi, S. S., Shamskhani, R., Karkeabadi, R., Saeed far, M., Shammakhi, H., & Rajabi, M. (2023). Corrosion and discharge performance of AZ61, AZ63, AZ101 and AZ103 alloys as anode in magnesium-dissolved oxygen seawater long term batteries. Journal of Power Sources, 570, 233004. https://doi.org/10.1016/j.jpowsour.2023.233004
Ahmed, I., Rehan, M., Basit, A., & Hong, K.-S. (2022). Greenhouse gases emission reduction for electric power generation sector by efficient dispatching of thermal plants integrated with renewable systems. Scientific Reports, 12(1), 12380. https://doi.org/10.1038/s41598-022-15983-0
Chen, J., Xu, W., Wang, X., Yang, S., & Xiong, C. (2023). Progress and Applications of Seawater-Activated Batteries. Sustainability, 15(2), 1635. https://doi.org/10.3390/su15021635
Deng, M., Wang, L., Vaghefinazari, B., Xu, W., Feiler, C., Lamaka, S. V., Höche, D., Zheludkevich, M. L., & Snihirova, D. (2021). High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Materials, 43, 238–247. https://doi.org/10.1016/j.ensm.2021.09.008
Ding, S., Yu, X., Ma, Z.-F., & Yuan, X. (2021). A review of rechargeable aprotic lithium–oxygen batteries based on theoretical and computational investigations. Journal of Materials Chemistry A, 9(13), 8160–8194. https://doi.org/10.1039/D1TA00646K
Gao, L.-M., Cao, J., Qiu, J.-Y., Chen, L.-J., Yang, J.-J., Li, H.-Z., Liao, B.-K., & Guo, X.-P. (2024). Adsorption and desorption behaviors of sodium dodecyl sulfate on the self-corrosion and discharge performances of AZ31B as anode for Mg seawater battery. Journal of Power Sources, 617, 235115. https://doi.org/10.1016/j.jpowsour.2024.235115
Ghigo, A., Faraggiana, E., Giorgi, G., Mattiazzo, G., & Bracco, G. (2024). Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review. Renewable and Sustainable Energy Reviews, 193, 114302. https://doi.org/10.1016/j.rser.2024.114302
Hou, L., Dang, N., Yang, H., Liu, B., Li, Y., Wei, Y., & Chen, X.-B. (2016). A Combined Inhibiting Effect of Sodium Alginate and Sodium Phosphate on the Corrosion of Magnesium Alloy AZ31 in NaCl Solution. Journal of The Electrochemical Society, 163(8), C486–C494. https://doi.org/10.1149/2.0941608jes
Karudesh, E., Aneesh, J., Francis, A. L., & Radha, R. (2024). Exploring the inhibition effect of tri-sodium phosphate concentrations on corrosion in Mg-sn-ca-mn anode for magnesium batteries. Materials Technology, 39(1), 2357513. https://doi.org/10.1080/10667857.2024.2357513
Khaleel, O. J., Basim Ismail, F., Khalil Ibrahim, T., & Bin Abu Hassan, S. H. (2022). Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations. Ain Shams Engineering Journal, 13(3), 101640. https://doi.org/10.1016/j.asej.2021.11.009
Kindle, M., Cha, Y., McCloy, J. S., & Song, M.-K. (2021). Alternatives to Cobalt: Vanadate Glass and Glass-Ceramic Structures as Cathode Materials for Rechargeable Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 9(2), 629–638. https://doi.org/10.1021/acssuschemeng.0c04026
Koo, S., Jeong, S., Seo, J., Song, Y., Kwon, O., Kim, Y. C., & Baek, S. (2020). Sea-water Battery for Maritime Applications. Global Oceans 2020: Singapore – U.S. Gulf Coast, 1–4. https://doi.org/10.1109/IEEECONF38699.2020.9389130
Lee, B.-S. (2020). A Review of Recent Advancements in Electrospun Anode Materials to Improve Rechargeable Lithium Battery Performance. Polymers, 12(9), 2035. https://doi.org/10.3390/polym12092035
Li, Q., Xiong, W., Yu, M., Li, J., Liu, L., Zhu, G., Wang, L., Wang, J., Yu, S., & Liu, E. (2022). Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery. Journal of Alloys and Compounds, 891, 161914. https://doi.org/10.1016/j.jallcom.2021.161914
Li, Y., Ma, J., Wang, G., Ren, F., Zhu, Y., & Song, Y. (2018). Investigation of Sodium Phosphate and Sodium Dodecylbenzenesulfonate as Electrolyte Additives for AZ91 Magnesium-Air Battery. Journal of The Electrochemical Society, 165(9), A1713–A1717. https://doi.org/10.1149/2.0581809jes
Liu, F., Liu, Y., Zhao, X., Liu, K., Yin, H., & Fan, L. (2020). Prelithiated V 2 C MXene: A High?Performance Electrode for Hybrid Magnesium/Lithium?Ion Batteries by Ion Cointercalation. Small, 16(8), 1906076. https://doi.org/10.1002/smll.201906076
Liu, P., Zhu, B., & Yang, M. (2021). Has marine technology innovation promoted the high-quality development of the marine economy? ——Evidence from coastal regions in China. Ocean & Coastal Management, 209, 105695. https://doi.org/10.1016/j.ocecoaman.2021.105695
Liu, X., Xue, J., Zhang, P., & Wang, Z. (2019). Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries. Journal of Power Sources, 414, 174–182. https://doi.org/10.1016/j.jpowsour.2018.12.092
Lu, X., Hu, J., Zhao, Y., Wang, M., Wang, X., Ye, Z., Zheng, Z., Hu, J., & Feng, X. (2021). Corrosion Behavior of Stannate Conversion Coatings on AZ31B Alloys and Their Initial Discharge Performance as Anodes for Seawater Batteries. Journal of The Electrochemical Society, 168(8), 080513. https://doi.org/10.1149/1945-7111/ac1a56
Ma, J., Zhang, Y., Ma, M., Qin, C., Ren, F., & Wang, G. (2020). Corrosion and discharge performance of a magnesium aluminum eutectic alloy as anode for magnesium–air batteries. Corrosion Science, 170, 108695. https://doi.org/10.1016/j.corsci.2020.108695
Nasri, E., Jarou, T., Benchikh, S., & Elkoudia, Y. (2023). Reliable energy supply and voltage control for hybrid microgrid by pid controlled with integrating of an EV charging station. Diagnostyka, 24(4), 1–11. https://doi.org/10.29354/diag/174145
Ong, A. K. S., Prasetyo, Y. T., Salazar, J. M. L. D., Erfe, J. J. C., Abella, A. A., Young, M. N., Chuenyindee, T., Nadlifatin, R., & Ngurah Perwira Redi, A. A. (2022). Investigating the acceptance of the reopening Bataan nuclear power plant: Integrating protection motivation theory and extended theory of planned behavior. Nuclear Engineering and Technology, 54(3), 1115–1125. https://doi.org/10.1016/j.net.2021.08.032
Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. https://doi.org/10.1016/j.rser.2022.112279
Shrestha, N., Raja, K. S., & Utgikar, V. (2019). Mg-RE Alloy Anode Materials for Mg-Air Battery Application. Journal of The Electrochemical Society, 166(14), A3139–A3153. https://doi.org/10.1149/2.0131914jes
Supriyono, Oktavian, R., Wulaningfitri, L. P. M. I., Pradana, J. C., & Feliana, I. (2018). Influence of anodizing concentration and electric potential on surface morphology and corrosion behavior of anodized magnesium in seawater activated battery. IOP Conference Series: Earth and Environmental Science, 105, 012054. https://doi.org/10.1088/1755-1315/105/1/012054
Tong, F., Chen, X., Wei, S., Malmström, J., Vella, J., & Gao, W. (2021). Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery. Journal of Magnesium and Alloys, 9(6), 1967–1976. https://doi.org/10.1016/j.jma.2021.08.022
Wang, C., Mei, D., Wiese, G., Wang, L., Deng, M., Lamaka, S. V., & Zheludkevich, M. L. (2020). High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium. Npj Materials Degradation, 4(1), 42. https://doi.org/10.1038/s41529-020-00146-1
Wang, N., Huang, Y., Liu, J., Yang, X., Xie, W., Cai, Q., Zheng, S., & Shi, Z. (2021). AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery. Electrochimica Acta, 378, 138135. https://doi.org/10.1016/j.electacta.2021.138135
Wang, R., Li, Q., Wang, N., Peng, C., & Feng, Y. (2018). Effect of Lithium on the Discharge and Corrosion Behavior of Mg-3 wt.% Al Alloy as the Anode for Seawater Activated Battery. Journal of Materials Engineering and Performance, 27(12), 6552–6563. https://doi.org/10.1007/s11665-018-3750-7
Wang, Z., Feng, G., Zhen, D., Gu, F., & Ball, A. (2021). A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Reports, 7, 5141–5161. https://doi.org/10.1016/j.egyr.2021.08.113
Wilson, B. J. (1968). CHARACTERISTICS OF AN IMPROVED INERT-CATHODE/MAGNESIUM-ANODE SEA-WATER BATTERY.
Wu, F., Maier, J., & Yu, Y. (2020). Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 49(5), 1569–1614. https://doi.org/10.1039/C7CS00863E
Xu, J., Cai, X., Cai, S., Shao, Y., Hu, C., Lu, S., & Ding, S. (2023). HIGH?ENERGY Lithium?Ion Batteries: Recent Progress and a Promising Future in Applications. ENERGY & ENVIRONMENTAL MATERIALS, 6(5), e12450. https://doi.org/10.1002/eem2.12450
Y?ld?r?m, B. (2021). The effect of hydroelectric power plants on the carbon emission: An example of Gokcekaya dam, Turkey. Renewable Energy, 170, 181-187. https://doi.org/10.1016/j.renene.2021.01.130
Yu, J., Li, B.-Q., Zhao, C.-X., & Zhang, Q. (2020). Seawater electrolyte-based metal–air batteries: From strategies to applications. Energy & Environmental Science, 13. https://doi.org/10.1039/D0EE01617A
Yu, J., Lv, Y., Duan, T., Meng, F., Cheng, Q., Xu, Y., Zhou, K., Xue, L., & Leng, Z. (2020). Discharge and Corrosion Behaviors of Mg-Li and Mg-Li-La Alloys as Anodes for Seawater Battery. International Journal of Electrochemical Science, 15(11), 10922–10935. https://doi.org/10.20964/2020.11.02
Zhang, D., Li, D., Zhang, J., & Sun, T. (2021). High-performance and low-cost manganese oxide/multiwalled carbon nanotubes composite as cathode material for aqueous magnesium ion battery. Journal of Electroanalytical Chemistry, 901, 115764. https://doi.org/10.1016/j.jelechem.2021.115764
Zhang, Y., Cao, J.-M., Yuan, Z., Xu, H., Li, D., Li, Y., Han, W., & Wang, L. (2022). TiVCT MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. Small, 18(30), 2202313. https://doi.org/10.1002/smll.202202313
Zhang, Y., Liu, G., Zhang, C., Chi, Q., Zhang, T., Feng, Y., Zhu, K., Zhang, Y., Chen, Q., & Cao, D. (2020). Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chemical Engineering Journal, 392, 123652. https://doi.org/10.1016/j.cej.2019.123652
Zheng, T., Hu, Y., Zhang, Y., Yang, S., & Pan, F. (2018). Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Materials & Design, 137, 245–255. https://doi.org/10.1016/j.matdes.2017.10.031