Effect of Zinc Addition in Copper to Structure, Hardness, Corrosion, and Antibacterial Activity
DOI:
https://doi.org/10.37385/jaets.v6i1.6098Keywords:
XRD, Vickers, Electrochemical Measurement, Staphylococcus Aureus, Escherichia coliAbstract
Brass (CuZn) is widely used today due to better mechanical, thermal, and chemical properties. The present research fabricated CuZn alloy by adding various Zn (6, 9, and 12 wt.%) to the Cu using gravity casting. Casts CuZn alloy by adding various Zn to the Cu to investigate optimum composition were resulting highest inhibited of bacterial activity. In addition, the structure, hardness, and electrochemical behavior of the alloy were also investigated using XRD, Vickers hardness, and potentiostat equipment. XRD confirmed that CuZn alloy has an alpha phase, and a FCC crystal structure. The rise of the Zn content in the alloy led to an increase in crystallite size, a decrease in the hardness and a shift to a more negative OCP potential at 1200 s measurement. Enhancing the Zn content to 9 wt.% in the alloy lead to decrease the corrosion rate. Moreover, 24-hour post-contact observation found that the sample places removed remained clear of bacteria. The Cu6Zn sample successfully inhibited the growth of Escherichia coli in the 3rd hour, while Staphylococcus aureus was 100 % reduced in the 7th hour. The Cu6Zn sample could be used as an alternative material for medical equipment in ambulances.
Downloads
References
Abed, K. M., & Dawood, N. M. (2022). Impacts of Tin and Germanium on Corrosion and Erosion-Corrosion Behavior of 60Cu-40Zn alloys. AIP Conference Proceedings, 2660, 020131. https://doi.org/10.1063/5.0108474
Akhyar, Iqbal, Ali, N., & Husin, H. (2023). Effect of variations in pouring temperature on tensile strength of CuZn cast alloys. Materials Letters: X, 17, 100182. https://doi.org/10.1016/j.mlblux.2023.100182
Augustin, A., Huilgol, P., Udupa, K. R., & Bhat K, U. (2016). Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface. Journal of the Mechanical Behavior of Biomedical Materials, 63, 352–360. https://doi.org/10.1016/j.jmbbm.2016.07.013
Azizian, F., Naffakh-Moosavy, H., & Bagheri, F. (2024). The role of Cu addition in the metallurgical features, mechanical properties, and cytocompatibility of cardiovascular stents biodegradable Zn-based alloy. Intermetallics, 164, 108106. https://doi.org/10.1016/j.intermet.2023.108106
Baker, L. B., & Wolfe, A. S. (2020). Physiological mechanisms determining eccrine sweat composition. European Journal of Applied Physiology, 120(4), 719–752. https://doi.org/10.1007/s00421-020-04323-7
Bhavsar, V., & Bali, S. C. (2023). Effect of Compressed Natural Gas (CNG) on corrosion behaviour of brass valve of CNG cylinder. Engineering Failure Analysis, 149, 107268. https://doi.org/10.1016/j.engfailanal.2023.107268
Blanco, D., Mar, E., & Mar, R. (2022). Titanium Alloys Applied to the Transport Sector?: A Review. Metals, 12(9), 1–21. https://doi.org/10.3390/met12010009
Bond, J. W., & Lieu, E. (2014). Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat. Applied Surface Science, 313, 455–461. https://doi.org/10.1016/j.apsusc.2014.06.005
Chen, L., Ma, R., Dong, J., Chen, S., Li, C., Ma, C., Bian, G., & Wang, C. (2024). A multi-ion transport model of Cu-Zn-Fe trimetallic couple in near-neutral NaCl solution. Corrosion Science, 239, 112414. https://doi.org/10.1016/j.corsci.2024.112414
Clement, A., & Auger, T. (2023). An EAM potential for ?-brass copper-zinc alloys: application to plasticity and fracture. Modelling and Simulation in Materials Science and Engineering, 31(1), 015004. https://doi.org/10.1088/1361-651X/aca4ec
Cocco, F., Fantauzzi, M., Elsener, B., & Rossi, A. (2016). Dissolution of brass alloys naturally aged in neutral solutions-an electrochemical and surface analytical study. RSC Advances, 6(93), 90654–90665. https://doi.org/10.1039/c6ra18200c
Di, T., Xu, Y., Liu, D., & Sun, X. (2022). Microstructure, Mechanical Performance and Anti-Bacterial Activity of Degradable Zn-Cu-Ag Alloy. Metals, 12(9), 1–13. https://doi.org/10.3390/met12091444
Dou, X., Chen, Y., & Shi, H. (2022). CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chemical Engineering Journal, 431(P2), 134054. https://doi.org/10.1016/j.cej.2021.134054
Dridi, A., Dhouibi, L., Hihn, J. Y., Berçot, P., Rezrazi, E. M., Sassi, W., & Rouge, N. (2020). Analytical Study of CuZn 30 and CuZn 39 Brass Surfaces in 3% NaCl Solution Under Polarization. Chemistry Africa, 3(3), 735–747. https://doi.org/10.1007/s42250-020-00182-z
Du, M., Zhao, W., Ma, R., Xu, H., Zhu, Y., Shan, C., Liu, K., Zhuang, J., & Jiao, Z. (2021). Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. Journal of Hazardous Materials, 418, 126013 Contents. https://doi.org/10.1016/j.jhazmat.2021.126013
Ezequiel, M., Proriol Serre, I., Auger, T., Héripré, E., Hadjem-Hamouche, Z., & Perriere, L. (2024). The liquid metal embrittlement of a reactive system at room temperature: ?-brasses in contact with the liquid eutectic Ga-In. Engineering Failure Analysis, 164, 108694. https://doi.org/10.1016/j.engfailanal.2024.108694
Gao, P., Ren, Y., Qian, S., He, Y., & Shen, D. (2021). Evolution of microstructure and electrochemical corrosion behavior of CuZn-based alloys induced by cold rolling. Journal of Materials Research and Technology, 15, 360–368. https://doi.org/10.1016/j.jmrt.2021.08.035
García-Mintegui, C., Córdoba, L. C., Buxadera-Palomero, J., Marquina, A., Jiménez-Piqué, E., Ginebra, M. P., Cortina, J. L., & Pegueroles, M. (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials, 6(12), 4430–4446. https://doi.org/10.1016/j.bioactmat.2021.04.015
Hajizadeh, K., Ejtemaei, S., & Eghbali, B. (2017). Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing. Applied Physics A: Materials Science and Processing, 123(8), 1–9. https://doi.org/10.1007/s00339-017-1123-y
Heidarzadeh, A., Javidani, M., & St-Georges, L. (2022). Crystallographic Orientation Relationship between ? and ? Phases during Non-Equilibrium Heat Treatment of Cu-37 wt. % Zn Alloy. Crystals, 12(1), 97. https://doi.org/10.3390/cryst12010097
Hendrawan, C. N., Setyani, A., Pertiwi, D. R. K., & Sofyan, B. T. (2021). Effect of 9wt% Mn addition on cold rolling and annealing behaviour of Cu-31Zn alloy. Materials Today: Proceedings, 46, 3346–3351. https://doi.org/10.1016/j.matpr.2020.11.476
Huang, S. J., Li, C., Feng, J. H., Selvaraju, S., & Subramani, M. (2024). Mechanical and Corrosion Tests for Magnesium–Zinc/Ti-6Al-4V Composites by Gravity Casting. Materials, 17(8), 1836. https://doi.org/10.3390/ma17081836
Hutchings, C., Yair, Z. P., Reifen, R., & Shemesh, M. (2021). Antimicrobial effect of zn2+ ions governs the microbial quality of donor human milk. Foods, 10(3), 1–12. https://doi.org/10.3390/foods10030637
Iqbal, Ali, N., Husin, H., Akhyar, Khairil, & Farhan, A. (2021). Differences in Pour Temperature Affect Hardness Properties of CuZn Brass Alloy through Metal Casting. IOP Conference Series: Materials Science and Engineering, 1082(1), 012001. https://doi.org/10.1088/1757-899x/1082/1/012001
Jinlong, L., Tongxiang, L., & Chen, W. (2016). Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel. Journal of Solid State Chemistry, 240, 109–114. https://doi.org/10.1016/j.jssc.2016.05.025
Karahan, I. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu 1-x Zn x shape memory alloy thin films. Applied Surface Science, 318, 100–104. https://doi.org/10.1016/j.apsusc.2014.01.119
Liu, P., Hu, J. ying, Li, H. xue, Sun, S. yu, & Zhang, Y. bin. (2020). Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM. Journal of Manufacturing Processes, 60, 578–585. https://doi.org/10.1016/j.jmapro.2020.10.071
Luo, J., Hein, C., Pierson, J. F., & Mücklich, F. (2020). Sodium chloride assists copper release, enhances antibacterial efficiency, and introduces atmospheric corrosion on copper surface. Surfaces and Interfaces, 20, 100630. https://doi.org/10.1016/j.surfin.2020.100630
Milošev, I., Taheri, P., Kapun, B., Kozlica, D. K., Mol, A., & Kokalj, A. (2024). The effect of molecular structure of imidazole-based compounds on corrosion inhibition of Cu, Zn, and Cu-Zn alloys. Corrosion Science, 127870. https://doi.org/10.1016/j.corsci.2024.112328
Morath, L., Rahim, S. A., Baker, C., Anderson, D., Hinds, M., Sikora-Jasinska, M., Oujiri, L., Leyssens, L., Kerckhofs, G., Pyka, G., Oliver, A. A., Drelich, J. W., & Goldman, J. (2024). The biological effects of copper alloying in Zn-based biodegradable arterial implants. Biomaterials Advances, November, 124658. https://doi.org/10.1016/j.bioadv.2024.214112
Mousavi, S. E., Sonboli, A., Naghshehkesh, N., Meratian, M., Salehi, A., & Sanayei, M. (2020). Different behavior of alpha and beta phases in a Low Stacking Fault Energy copper alloy under severe plastic deformation. Materials Science and Engineering: A, 788, 139550. https://doi.org/10.1016/j.msea.2020.139550
Nikhil, Singh, M. K., Ji, G., & Prakash, R. (2021). Investigation on the effects of cooling rate on surface Texture, corrosion behaviour and hardness of pure copper. Materials Today: Proceedings, 47(19), 6693–6695. https://doi.org/10.1016/j.matpr.2021.05.115
Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B. C., Oghenekowho, P. A., Okeke, I. U., & Maduka, E. A. (2021). Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences, 3(11), 829. https://doi.org/10.1007/s42452-021-04784-1
Nuryadi, N., Sudarsono, B., & Asistyasari, A. (2020). Effect of Moisture Content of Green Sand on The Casting Defects. Journal of Applied Engineering and Technological Science, 4(1), 586–598.
Özdemir, R., & Karahan, I. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu 1-x Zn x thin films. Applied Surface Science, 318, 314–318. https://doi.org/10.1016/j.apsusc.2014.06.188
Pietrocola, G., Campoccia, D., Motta, C., Montanaro, L., Arciola, C. R., & Speziale, P. (2022). Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. International Journal of Molecular Sciences, 23(11), 5958. https://doi.org/10.3390/ijms23115958
Qu, X., Yang, H., Jia, B., Yu, Z., Zheng, Y., & Dai, K. (2020). Biodegradable Zn–Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomaterialia, 117, 400–417. https://doi.org/10.1016/j.actbio.2020.09.041
Riaz, M., Najam, M., Imtiaz, H., Bashir, F., & Hussain, T. (2024). Structural and biological analysis of Zn–Cu based biodegradable alloys for orthopedic application. Materials Chemistry and Physics, 312, 128618. https://doi.org/10.1016/j.matchemphys.2023.128618
Sabbouh, M., Nikitina, A., Rogacheva, E., Nebalueva, A., Shilovskikh, V., Sadovnichii, R., Koroleva, A., Nikolaev, K., Kraeva, L., Ulasevich, S., & Skorb, E. (2023). Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. Ultrasonics Sonochemistry, 92, 106247. https://doi.org/10.1016/j.ultsonch.2022.106247
Sangeetha, R., Muthukumaran, S., & Ashokkumar, M. (2015). Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 144, 1–7. https://doi.org/10.1016/j.saa.2015.02.056
Shahriyari, F., Shaeri, M. H., Dashti, A., Zarei, Z., Noghani, M. T., Cho, J. H., & Djavanroodi, F. (2022). Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. Materials Science and Engineering: A, 831, 142149. https://doi.org/10.1016/j.msea.2021.142149
Situmorang, E. M. H., Henniwuriyama, V., & Soegijono, B. (2019). Oligodynamic Cu-Zn composite fabricated by powder metallurgy method. Journal of Physics: Conference Series, 1191(1). https://doi.org/10.1088/1742-6596/1191/1/012044
Soegijono, B., Susetyo, F. B., Yusmaniar, & Fajrah, M. C. (2020). Electrodeposition of paramagnetic copper film under magnetic field on paramagnetic aluminum alloy substrates. E-Journal of Surface Science and Nanotechnology, 18, 281–288. https://doi.org/10.1380/EJSSNT.2020.281
Soltani, S., Akhbari, K., & White, J. (2020). Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. Journal of Molecular Structure, 1214, 128233. https://doi.org/10.1016/j.molstruc.2020.128233
Strz?pek, P., Mamala, A., Zasadzi?ska, M., Franczak, K., & Jurkiewicz, B. (2019). Research on the drawing process of Cu and CuZn wires obtained in the cryogenic conditions. Cryogenics, 100, 11–17. https://doi.org/10.1016/j.cryogenics.2019.03.007
Syamsuir, Susetyo, F. B., Soegijono, B., Yudanto, S. D., Basori, Ajiriyanto, M. K., Edbert, D., Situmorang, E. U. M., Nanto, D., & Rosyidan, C. (2023). Rotating-Magnetic-Field-Assisted Electrodeposition of Copper for Ambulance Medical Equipment. Automotive Experiences, 6(2), 290–302. https://doi.org/10.31603/ae.9067
Tajik, S., Najar-Peerayeh, S., & Bakhshi, B. (2020). Hospital clones of Panton-Valentine leukocidin-positive and methicillin-resistant Staphylococcus aureus circulating in the Tehran community. Journal of Global Antimicrobial Resistance, 22, 177–181. https://doi.org/10.1016/j.jgar.2019.12.010
Tayyab, K. Bin, Farooq, A., Alvi, A. A., Nadeem, A. B., & Deen, K. M. (2021). Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. International Journal of Minerals, Metallurgy and Materials, 28(3), 440–449. https://doi.org/10.1007/s12613-020-2054-8
Vandersluis, E., Machin, A., Perovic, D., & Ravindran, C. (2020). Failure Analysis of an Ambulance Cathode Ray Tube Monitor Bracket. Journal of Failure Analysis and Prevention, 20(1), 23–33. https://doi.org/10.1007/s11668-020-00804-1
Viegas, C., Sousa, P., Dias, M., Caetano, L. A., Ribeiro, E., Carolino, E., Twaru?ek, M., Kosicki, R., & Viegas, S. (2021). Bioburden contamination and Staphylococcus aureus colonization associated with firefighter’s ambulances. Environmental Research, 197, 111125. https://doi.org/10.1016/j.envres.2021.111125
Villapún, V. M., Dover, L. G., Cross, A., & González, S. (2016). Antibacterial metallic touch surfaces. Materials, 9(9), 1–23. https://doi.org/10.3390/ma9090736
Wang, X., Su, H., Xie, Y., Wang, J., Feng, C., Li, D., & Wu, T. (2023). Atmospheric corrosion of T2 copper and H62 brass exposed in an urban environment. Materials Chemistry and Physics, 299, 127487. https://doi.org/10.1016/j.matchemphys.2023.127487
Widyastuti, Rochiem, R., Fellicia, D. M., Adrinanda, C. F. N., & Wibowo, A. P. (2023). Mechanical Properties, Microstructural, and Deep Drawing Formability Analysis on the Annealed CuZn35 Brass Alloy for Cartridge Application. Key Engineering Materials, 939, 31–37. https://doi.org/10.4028/p-21x8y5
Xhafa, S., Olivieri, L., Di Nicola, C., Pettinari, R., Pettinari, C., Tombesi, A., & Marchetti, F. (2023). Copper and Zinc Metal–Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram? Bacterial Strains. Molecules, 28(16), 6160. https://doi.org/10.3390/molecules28166160
Yin, M. yang, Li, Z., Xiao, Z., Pang, Y., Li, Y. ping, & Shen, Z. yan. (2021). Corrosion behavior of Cu?Al?Mn?Zn?Zr shape memory alloy in NaCl solution. Transactions of Nonferrous Metals Society of China (English Edition), 31(4), 1012–1022. https://doi.org/10.1016/S1003-6326(21)65557-7
Zeng, J., Geng, X., Tang, Y., Xiong, Z. C., Zhu, Y. J., & Chen, X. (2022). Flexible photothermal biopaper comprising Cu2+-doped ultralong hydroxyapatite nanowires and black phosphorus nanosheets for accelerated healing of infected wound. Chemical Engineering Journal, 437, 135347. https://doi.org/10.1016/j.cej.2022.135347
Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., & Qin, G. (2021). Antibacterial metals and alloys for potential biomedical implants. Bioactive Materials, 6(8), 2569–2612. https://doi.org/10.1016/j.bioactmat.2021.01.030
Zhang, X., Liu, X., Odnevall Wallinder, I., & Leygraf, C. (2016). The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere. Corrosion Science, 103, 20–29. https://doi.org/10.1016/j.corsci.2015.10.027
Ziat, Y., Hammi, M., Laghlimi, C., & Moutcine, A. (2020). Investment casting of leaded brass: Microstructure micro-hardness and corrosion protection by epoxy coating. Materialia, 12, 100794 Contents. https://doi.org/10.1016/j.mtla.2020.100794