Advanced Smart Bracelet for Elderly: Combining Temperature Monitoring and GPS Tracking

Authors

  • Sugondo Hadiyoso Telkom University
  • Indrarini Dyah Irawati Telkom University
  • Akhmad Alfaruq Telkom University
  • Tasya Chairunnisa Telkom University
  • Muhamad Roihan Telkom University
  • Suyatno Suyatno Telkom University

DOI:

https://doi.org/10.37385/jaets.v6i1.6182

Keywords:

aging population, smart bracelet, temperature, location, monitoring

Abstract

Indonesia is entering an aging population period, marked by an increase in the number of elderly individuals, accompanied by a rise in dementia cases. This situation leads to higher dependency among the elderly on others for assistance or long-term care. Dementia can cause elderly people to lose their sense of direction, often wandering aimlessly, making them difficult to track. To address this issue, a wearable smart bracelet is proposed to monitor the location and a vital body parameter such as body temperature. The system is equipped with a tracking application that can send an alert if the user is outside a designated area. It automatically sends a warning message to the caregiver's or family member's smartphone when abnormal signs are detected. The bracelet is designed like a wristwatch, to be worn on the wrist. It is small, lightweight, and battery-operated. Temperature and location data can be transmitted in real-time using an internet network to mobile devices. The device can notify when the user is outside the specified area. Test results indicate that the device has high accuracy and reliability in monitoring location and body temperature with accuracy around 98.5%, as well as sending notifications through a Telegram bot when certain thresholds are exceeded. This device can work properly for up to 5 hours on a single battery charge. With this device, it is expected to help monitor and support the care of the elderly so that they can improve their quality of life. This device can also provide an emergency alarm if the elderly are outside the area.

Downloads

Download data is not yet available.

References

Abdi, S., Spann, A., Borilovic, J., de Witte, L., & Hawley, M. (2019). Understanding the care and support needs of older people: a scoping review and categorisation using the WHO international classification of functioning, disability and health framework (ICF). BMC Geriatrics, 19(1), 195. https://doi.org/10.1186/s12877-019-1189-9

Ahmed, S., Irfan, S., Kiran, N., Masood, N., Anjum, N., & Ramzan, N. (2023). Remote Health Monitoring Systems for Elderly People: A Survey. Sensors, 23(16), 7095. https://doi.org/10.3390/s23167095

Al-khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., & Waraich, A. (2019). Remote health monitoring of elderly through wearable sensors. Multimedia Tools and Applications, 78(17), 24681–24706. https://doi.org/10.1007/s11042-018-7134-7

Anawade, P. A., Sharma, D., & Gahane, S. (2024). A Comprehensive Review on Exploring the Impact of Telemedicine on Healthcare Accessibility. Cureus. https://doi.org/10.7759/cureus.55996

Chen, J., Zhao, M., Zhou, R., Ou, W., & Yao, P. (2023). How heavy is the medical expense burden among the older adults and what are the contributing factors? A literature review and problem-based analysis. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1165381

Fang, Z., & Ouyang, S. (2022). Nursing Effect of Health Monitoring System on Elderly Patients with Osteoporosis. BioMed Research International, 2022, 1–12. https://doi.org/10.1155/2022/1447388

Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.-H., Brooks, G. A., Davis, R. W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514. https://doi.org/10.1038/nature16521

Giovannini, S., Brau, F., Galluzzo, V., Santagada, D. A., Loreti, C., Biscotti, L., Laudisio, A., Zuccalà, G., & Bernabei, R. (2022). Falls among Older Adults: Screening, Identification, Rehabilitation, and Management. Applied Sciences, 12(15), 7934. https://doi.org/10.3390/app12157934

Gnana Sheela, K., & Rose Varghese, A. (2020). Machine Learning based Health Monitoring System. Materials Today: Proceedings, 24, 1788–1794. https://doi.org/10.1016/j.matpr.2020.03.603

Greene, S., Thapliyal, H., & Carpenter, D. (2016). IoT-Based Fall Detection for Smart Home Environments. 2016 IEEE International Symposium on Nanoelectronic and Information Systems (INIS), 23–28. https://doi.org/10.1109/iNIS.2016.017

Hadiyoso, S., Tulloh, R., Rohmah, Y. S., & Alfaruq, A. (2021). Design and development armband vital sign monitor for health-care monitoring. Journal of Medical Signals and Sensors, 11(3), 208–216. https://doi.org/10.4103/jmss.JMSS_29_20

Hou, J. (2023). Interactive Technologies of Wearable Devices for Elderly: A Literature Review. OALib, 10(08), 1–17. https://doi.org/10.4236/oalib.1110537

Iaboni, A., Spasojevic, S., Newman, K., Schindel Martin, L., Wang, A., Ye, B., Mihailidis, A., & Khan, S. S. (2022). Wearable multimodal sensors for the detection of behavioral and psychological symptoms of dementia using personalized machine learning models. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1). https://doi.org/10.1002/dad2.12305

Jegan, R., & Nimi, W. S. (2024). On the development of low power wearable devices for assessment of physiological vital parameters: a systematic review. Journal of Public Health, 32(7), 1093–1108. https://doi.org/10.1007/s10389-023-01893-6

Joshi, N. B., & Nalbalwar, S. L. (2017). A fall detection and alert system for an elderly using computer vision and Internet of Things. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1276–1281. https://doi.org/10.1109/RTEICT.2017.8256804

Kallestrup-Lamb, M., Marin, A. O. K., Menon, S., & Søgaard, J. (2024). Aging populations and expenditures on health. The Journal of the Economics of Ageing, 29, 100518. https://doi.org/10.1016/j.jeoa.2024.100518

Kekade, S., Hseieh, C.-H., Islam, M. M., Atique, S., Mohammed Khalfan, A., Li, Y.-C., & Abdul, S. S. (2018). The usefulness and actual use of wearable devices among the elderly population. Computer Methods and Programs in Biomedicine, 153, 137–159. https://doi.org/10.1016/j.cmpb.2017.10.008

Kesehatan, K. K. B. P. dan P. (2018). HASIL UTAMA RISKESDAS 2018 Kementerian. https://doi.org/1 Desember 2013

Kim, K. B., & Baek, H. J. (2023). Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions. Electronics, 12(13), 2923. https://doi.org/10.3390/electronics12132923

Ko, H. Y. K., Tripathi, N. K., Mozumder, C., Muengtaweepongsa, S., & Pal, I. (2023). Real-Time Remote Patient Monitoring and Alarming System for Noncommunicable Lifestyle Diseases. International Journal of Telemedicine and Applications, 2023, 1–13. https://doi.org/10.1155/2023/9965226

Kruk, M. E., Gage, A. D., Arsenault, C., Jordan, K., Leslie, H. H., Roder-DeWan, S., Adeyi, O., Barker, P., Daelmans, B., Doubova, S. V, English, M., García-Elorrio, E., Guanais, F., Gureje, O., Hirschhorn, L. R., Jiang, L., Kelley, E., Lemango, E. T., Liljestrand, J., … Pate, M. (2018). High-quality health systems in the Sustainable Development Goals era: time for a revolution. The Lancet Global Health, 6(11), e1196–e1252. https://doi.org/10.1016/S2214-109X(18)30386-3

Kulurkar, P., Dixit, C. kumar, Bharathi, V. C., Monikavishnuvarthini, A., Dhakne, A., & Preethi, P. (2023). AI based elderly fall prediction system using wearable sensors: A smart home-care technology with IOT. Measurement: Sensors, 25, 100614. https://doi.org/10.1016/j.measen.2022.100614

Martinez-Lacoba, R., Pardo-Garcia, I., & Escribano-Sotos, F. (2021). Aging, Dependence, and Long-Term Care: A Systematic Review of Employment Creation. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 58. https://doi.org/10.1177/00469580211062426

Mas’ul, Z. (2023). Projecting the Future Ageing Population in Post-2045: The Today’s Millenials Perspectives. Jurnal Jamsostek, 1(1), 1–31. https://doi.org/10.61626/jamsostek.v1i1.4

Ming, D. K., Sangkaew, S., Chanh, H. Q., Nhat, P. T. H., Yacoub, S., Georgiou, P., & Holmes, A. H. (2020). Continuous physiological monitoring using wearable technology to inform individual management of infectious diseases, public health and outbreak responses. International Journal of Infectious Diseases, 96, 648–654. https://doi.org/10.1016/j.ijid.2020.05.086

Moore, K., O’Shea, E., Kenny, L., Barton, J., Tedesco, S., Sica, M., Crowe, C., Alamäki, A., Condell, J., Nordström, A., & Timmons, S. (2021). Older Adults’ Experiences With Using Wearable Devices: Qualitative Systematic Review and Meta-synthesis. JMIR MHealth and UHealth, 9(6), e23832. https://doi.org/10.2196/23832

Naeim, M. K. M., Chung, G. C., Lee, I. E., Tiang, J. J., & Tan, S. F. (2023). A Mobile IoT-based Elderly Monitoring System for Senior Safety. International Journal of Technology, 14(6), 1185. https://doi.org/10.14716/ijtech.v14i6.6634

Olmedo-Aguirre, J. O., Reyes-Campos, J., Alor-Hernández, G., Machorro-Cano, I., Rodríguez-Mazahua, L., & Sánchez-Cervantes, J. L. (2022). Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors, 12(2), 73. https://doi.org/10.3390/bios12020073

Qin, F.-Y., Lv, Z.-Q., Wang, D.-N., Hu, B., & Wu, C. (2020). Health status prediction for the elderly based on machine learning. Archives of Gerontology and Geriatrics, 90, 104121. https://doi.org/10.1016/j.archger.2020.104121

Rocha, I. C., Arantes, M., Moreira, A., Vilaça, J. L., Morais, P., Matos, D., & Carvalho, V. (2024). Monitoring Wearable Devices for Elderly People with Dementia: A Review. Designs, 8(4), 75. https://doi.org/10.3390/designs8040075

Rodríguez, I., Cajamarca, G., Herskovic, V., Fuentes, C., & Campos, M. (2017). Helping Elderly Users Report Pain Levels: A Study of User Experience with Mobile and Wearable Interfaces. Mobile Information Systems, 2017, 1–12. https://doi.org/10.1155/2017/9302328

Rudnicka, E., Napiera?a, P., Podfigurna, A., M?czekalski, B., Smolarczyk, R., & Grymowicz, M. (2020). The World Health Organization (WHO) approach to healthy ageing. Maturitas, 139, 6–11. https://doi.org/10.1016/j.maturitas.2020.05.018

Rukmini Rukmini, Adianti Handajani, Astridya Paramita, Pramita Andarwati, & Agung Dwi Laksono. (2021). Non-Communicable Diseases among the Elderly in Indonesia in 2018. Indian Journal of Forensic Medicine & Toxicology, 16(1), 1026–1036. https://doi.org/10.37506/ijfmt.v16i1.17631

SALMA, I., TESTA, D., MPOY, J., PEREZ-TORRENTS, J., REHAULT, J., CABANES, E., & MINVIELLE, E. (2024). Remote Monitoring System for Older Adults at Risk for Complications: A Scoping Review. In Research Square (pp. 1–26). https://doi.org/10.21203/rs.3.rs-4668678/v1

Serrano, L. P., Maita, K. C., Avila, F. R., Torres-Guzman, R. A., Garcia, J. P., Eldaly, A. S., Haider, C. R., Felton, C. L., Paulson, M. R., Maniaci, M. J., & Forte, A. J. (2023). Benefits and Challenges of Remote Patient Monitoring as Perceived by Health Care Practitioners: A Systematic Review. The Permanente Journal, 27(4), 100–111. https://doi.org/10.7812/TPP/23.022

Silverio, A. A., Silverio, A. A., & Remot, A. M. (2020). Low-Cost Elderly Healthcare Monitoring System. Journal of Physics: Conference Series, 1529(3), 032061. https://doi.org/10.1088/1742-6596/1529/3/032061

Singh, S., & Bajorek, B. (2014). Defining “elderly” in clinical practice guidelines for pharmacotherapy. Pharmacy Practice (Internet), 12(4), 0–0. https://doi.org/10.4321/S1886-36552014000400007

Soon, S., Svavarsdottir, H., Downey, C., & Jayne, D. G. (2020). Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field. BMJ Innovations, 6(2), 55–71. https://doi.org/10.1136/bmjinnov-2019-000354

Teixeira, E., Fonseca, H., Diniz-Sousa, F., Veras, L., Boppre, G., Oliveira, J., Pinto, D., Alves, A. J., Barbosa, A., Mendes, R., & Marques-Aleixo, I. (2021). Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics, 6(2), 38. https://doi.org/10.3390/geriatrics6020038

Uddin, R., & Koo, I. (2024). Real-Time Remote Patient Monitoring: A Review of Biosensors Integrated with Multi-Hop IoT Systems via Cloud Connectivity. Applied Sciences, 14(5), 1876. https://doi.org/10.3390/app14051876

Vijayan, V., Connolly, J. P., Condell, J., McKelvey, N., & Gardiner, P. (2021). Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors, 21(16), 5589. https://doi.org/10.3390/s21165589

Wang, L., Zhang, Y., & Bruce, P. G. (2023). Batteries for wearables. National Science Review, 10(1). https://doi.org/10.1093/nsr/nwac062

Wang, W.-H., & Hsu, W.-S. (2023). Integrating Artificial Intelligence and Wearable IoT System in Long-Term Care Environments. Sensors, 23(13), 5913. https://doi.org/10.3390/s23135913

Wu, J.-Y., Wang, Y., Ching, C. T. S., Wang, H.-M. D., & Liao, L.-D. (2023). IoT-based wearable health monitoring device and its validation for potential critical and emergency applications. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1188304

Downloads

Published

2024-12-15

How to Cite

Hadiyoso, S., Irawati, I. D., Alfaruq, A. ., Chairunnisa, T., Roihan, M. ., & Suyatno, S. (2024). Advanced Smart Bracelet for Elderly: Combining Temperature Monitoring and GPS Tracking. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 668–683. https://doi.org/10.37385/jaets.v6i1.6182