The Potential of Sawdust and Coconut Fiber as Sound Reduction Materials

Authors

  • Joseph Nyumutsu Department of Mechanical Engineering, University of Energy and Natural Resources, Sunyani, Ghana
  • Anthony Agyei-Agyemang Kwame Nkrumah University of Science and Technology
  • Prince Yaw Andoh Kwame Nkrumah University of Science and Technology
  • Peter Oppong Tawiah Kwame Nkrumah University of Science and Technology https://orcid.org/0000-0002-5502-1517
  • Benjamin Atribawuni Asaaga Kwame Nkrumah University of Science and Technology https://orcid.org/0000-0003-0454-3865

DOI:

https://doi.org/10.37385/jaets.v4i2.624

Keywords:

Noise Reduction Coefficient (NRC), Acoustic Properties, Coconut Fiber, Saw Dust, Noise Pollution

Abstract

In this study, biodegradable materials that could be utilized to reduce noise were examined. Sound absorption test was conducted with an impedance tube. Sawdust, coconut fiber, and expansive clay were used to create test samples. Noise reduction coefficient results for sawdust and expansive clay mixture ranged from 0.24 to 0.62. A mixture of coconut fiber and expansive clay recorded in noise reduction coefficient between 0.31 and 0.58. Coconut fiber mixed with expansive clay recorded noise reduction coefficient ranging from 0.31 to 0.58. The study findings suggests that these materials have good acoustic properties and can therefore be used as alternative noise reduction materials. These findings have important implications in reducing environmental pollution if adopted in the development of noise reducing materials.

Downloads

Download data is not yet available.

Author Biographies

Joseph Nyumutsu, Department of Mechanical Engineering, University of Energy and Natural Resources, Sunyani, Ghana

 

 

Prince Yaw Andoh, Kwame Nkrumah University of Science and Technology

 

 

Peter Oppong Tawiah, Kwame Nkrumah University of Science and Technology

 

 

Benjamin Atribawuni Asaaga, Kwame Nkrumah University of Science and Technology

 

 

References

Abd-elfattah, A. M., & Abd-Elbasseer, M. (2011). Characterization of poly-isoprene rubber layer backed with porous material as sound absorber and vibration damper. Journal of American Science, 7(No 2), 102–109. https://doi.org/10.7537/marsjas070211.14

Adnan, N. Q. A., & Rus, A. Z. M. (2013). Sound Absorption of Laminated Biopolymer Foam and Epoxy Foam. Key Engineering Materials, 594–595, 291–295. https://doi.org/10.4028/www.scientific.net/KEM.594-595.291

Asdrubali, F. (2006). Survey on the Acoustical Properties of New Sustainable Materials for Noise Control. Proceedings of Euronoise.

Azkorra, Z., Pérez, G., Coma, J., Cabeza, L. F., Bures, S., Álvaro, J. E., Erkoreka, A., & Urrestarazu, M. (2015). Evaluation of green walls as a passive acoustic insulation system for buildings. Applied Acoustics, 89, 46–56. https://doi.org/10.1016/j.apacoust.2014.09.010

Breysse, P. N. J. H. U., & Lees, P. S. J. H. U. (2006). Noise (Lecture Notes).

Chen, Q., Wu, W., Gao, X., Huang, Y., Chen, X., Kang, J., & Li, C. (2022). Sound Absorption Performance of Aluminum Silicate Fiber for Noise and Vibration Reduction of Distribution Transformer. Journal of Physics: Conference Series, 2152(1), 012037. https://doi.org/10.1088/1742-6596/2152/1/012037

Crocker, M. J., & Arenas, J. P. (2007). Use of Sound-Absorbing Materials. In Handbook of Noise and Vibration Control (pp. 696–713). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470209707.ch57

D’Alessandro, F., & Pispola, G. (2005). Sound Absorption Properties of Sustainable Fibrous Materials in an Enhanced Reverberation Room. The 2005 Congress and Exposition of Sound Control Engineering.

Doutres, O., & Atalla, N. (2012). Sound Absorption Properties of Functionally Graded Polyurathane Foams. Inter-Noise and Noise-Con Congress and Conference Proceedings, 679–688.

Galbrun, L., & Scerri, L. (2017). Sound insulation of lightweight extensive green roofs. Building and Environment, 116, 130–139. https://doi.org/10.1016/j.buildenv.2017.02.008

Gheorghe, A. (2013). Increasing Noise Reduction Level through Association of Soundproofing and Soundizolation Materials at Realisation of Modular Structural Elements of Acoustic Protection. Acoustics and Robotics, 140–146.

Goelzer, B., Hansen, C. H., & Sehrndt, G. (2001). Occupational exposure to noise: evaluation, prevention and control (B. Goelzer, C. H. Hansen, & G. Sehrndt (eds.)). World Health Organisation. http://www.who.int/occupational_health/publications/occupnoise/en/

Hong, M., & Chen, E. Y.-X. (2017). Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 19(16), 3692–3706. https://doi.org/10.1039/C7GC01496A

Indrianti, N., Biru, N. B., & Wibawa, T. (2016). The Development of Compressor Noise Barrier in the Assembly Area (Case Study of PT Jawa Furni Lestari). Procedia CIRP, 40, 705–710. https://doi.org/10.1016/j.procir.2016.01.158

Kaamin, M., Zaid, N. F., Daud, M. E., Rahman, R. A., & Mubarak, H. (2019). Analysis on Absorption Sound Acoustic Panels from Egg Tray with Corn Husk and Sugar Cane. International Journal of Innovative Technology and Exploring Engineering, 8(9S3), 1426–1431. https://doi.org/10.35940/ijitee.i3304.0789s319

Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polymer Degradation and Stability, 137, 122–130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009

Liang, M., Wu, H., Liu, J., Shen, Y., & Wu, G. (2022). Improved sound absorption performance of synthetic fiber materials for industrial noise reduction: a review. Journal of Porous Materials, 29(3), 869–892. https://doi.org/10.1007/s10934-022-01219-z

Monkova, K., Vasina, M., Monka, P. P., Kozak, D., & Vanca, J. (2020). Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance. Materials, 13(20), 4474. https://doi.org/10.3390/ma13204474

Muhazeli, N. S., Nordin, N. A., Ubaidillah, U., Mazlan, S. A., Abdul Aziz, S. A., Nazmi, N., & Yahya, I. (2020). Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam. Materials, 13(24), 5637. https://doi.org/10.3390/ma13245637

Navhi, H., Fouladi, M. H., & Nor, M. J. M. (2009). Evaluation of Whole-Body Vibration and Ride Comfort in a Passenger Car. The International Journal of Acoustics and Vibration, 14(3). https://doi.org/10.20855/ijav.2009.14.3245

Oancea, I., Bujoreanu, C., Budescu, M., Benchea, M., & Gr?dinaru, C. M. (2018). Considerations on sound absorption coefficient of sustainable concrete with different waste replacements. Journal of Cleaner Production, 203, 301–312. https://doi.org/10.1016/J.JCLEPRO.2018.08.273

Or, K. H., Putra, A., & Selamat, M. Z. (2017). Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Applied Acoustics, 119, 9–16. https://doi.org/10.1016/j.apacoust.2016.12.002

Randall, R. B. (2009). The Application of Fault Simulation to Machine Diagnostics and Prognostics. The International Journal of Acoustics and Vibration, 14(2). https://doi.org/10.20855/ijav.2009.14.2240

Rmili, W., Ouahabi, A., Serra, R., & Kious, M. (2009). Tool Wear Monitoring in Turning Processes Using Vibratory Analysis. International Journal of Acoustics and Vibration, 14(No 1), 4–11.

Roozen, N. B., van den Oetelaar, J., Geerlings, A., & Vliegenthart, T. (2009). Source Identification and Noise Reduction of a Reciprocating Compressor; a Case History. The International Journal of Acoustics and Vibration, 14(2). https://doi.org/10.20855/ijav.2009.14.2241

Sailesh, R., Yuvaraj, L., Doddamani, M., Babu Mailan Chinnapandi, L., & Pitchaimani, J. (2022). Sound absorption and transmission loss characteristics of 3D printed bio-degradable material with graded spherical perforations. Applied Acoustics, 186, 108457. https://doi.org/10.1016/j.apacoust.2021.108457

Seddeq, H. S. (2009). Factors Influencing Acoustic Performance of Sound Absorptive Materials. Australian Journal of Basic and Applied Sciences, 4610–4617.

Taban, E., Amininasab, S., Soltani, P., Berardi, U., Abdi, D. D., & Samaei, S. E. (2021). Use of date palm waste fibers as sound absorption material. Journal of Building Engineering, 41, 102752. https://doi.org/10.1016/j.jobe.2021.102752

Taban, E., Khavanin, A., Ohadi, A., Jonidi, A., & Faridan, M. (2019). Experimental study and modelling of date palm fibre composite acoustic behaviour using differential evolution algorithm. Iran Occupational Health (IOH), 16(2). http://ioh.iums.ac.ir/article-1-2515-en.html

Taban, E., Valipour, F., Abdi, D. D., & Amininasab, S. (2021). Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. International Journal of Environmental Science and Technology, 18(9), 2765–2780. https://doi.org/10.1007/s13762-020-03024-0

Tao, J., Wang, P., Qiu, X., & Pan, J. (2015). Static flow resistivity measurements based on the ISO 10534.2 standard impedance tube. Building and Environment, 94, 853–858. https://doi.org/10.1016/j.buildenv.2015.06.001

Tengku Izhar, T. N., Deraman, L. M., Ibrahim, W. N., & Lutpi, N. A. (2015). Investigation of noise reduction coefficient of organic material as indoor noise reduction panel. Materials Science Forum, 803, 317–324. https://doi.org/10.4028/www.scientific.net/MSF.803.317

Tuler, M. V., & Kaewunruen, S. (2017). Life cycle analysis of mitigation methodologies for railway rolling noise and groundbourne vibration. Journal of Environmental Management, 191, 75–82. https://doi.org/10.1016/j.jenvman.2016.12.075

Tuma, J. (2009). Gearbox Noise and Vibration Prediction and Control. The International Journal of Acoustics and Vibration, 14(2). https://doi.org/10.20855/ijav.2009.14.2242

Upadhyay, S. H., Harsha, S. P., & Jain, S. C. (2009). Vibration Signature Analysis of High-Speed Unbalanced Rotors Supported by Rolling-Element Bearings due to Off-Sized Rolling Elements. The International Journal of Acoustics and Vibration, 14(3). https://doi.org/10.20855/ijav.2009.14.3247

V, B. A., & N, S. (2019a). Noise Control using Waste Materials Reinforced Composites. London Journal of Research Science: Natural and Formal, 19(1).

V, B. A., & N, S. (2019b). Noise Control using Waste Materials Reinforced Composites. London Journal of Research Science: Natural and Formal, 19(1), 45–54.

Vašina, M. (2022). Advanced Materials Structures for Sound and Vibration Damping. Materials, 15(4), 1295. https://doi.org/10.3390/ma15041295

Wertel, S. J. (2000). Experimental Analysis of Noise Reduction Properties of Sound Absorbing Foam [University of Wisconsin-Stout]. http://www2.uwstout.edu/content/lib/thesis/2001/2001wertels.pdf

Yang, T., Hu, L., Xiong, X., Petr?, M., Noman, M. T., Mishra, R., & Militký, J. (2020). Sound Absorption Properties of Natural Fibers: A Review. Sustainability, 12(20), 8477. https://doi.org/10.3390/su12208477

Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Effect of different factors on sound absorption property of porous concrete. Transportation Research Part D: Transport and Environment, 87, 102532. https://doi.org/10.1016/j.trd.2020.102532

Downloads

Published

2023-06-05

How to Cite

Nyumutsu, J., Agyei-Agyemang, A., Andoh, P. Y., Tawiah, P. O., & Asaaga, B. A. (2023). The Potential of Sawdust and Coconut Fiber as Sound Reduction Materials. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 734–742. https://doi.org/10.37385/jaets.v4i2.624