Developing a Cost-Effective Air Quality Monitoring Solution Using IoT Technology: Addressing Long-Distance Transmission Challenge
DOI:
https://doi.org/10.37385/jaets.v7i1.6254Keywords:
LoRa Mesh Network, Wireless Internet of Things Technology (WIoT), Air Quality MonitoringAbstract
This research explores the integration of Internet of Things (IoT) technology and LoRa repeaters to enhance air quality monitoring. IoT enables low-cost, real-time sensors for continuous air quality assessment, while repeaters address the limitations of traditional wireless communication over long distances. Our study demonstrates the effectiveness of a LoRa repeater system, with signal strengths between monitoring stations and repeaters ranging from -84 dBm to -92 dBm, achieving a practical operational range of 850 meters. The highest Packet Delivery Ratio (PDR) recorded was 65% using a Spreading Factor (SF) of 10, while SF 7 resulted in a PDR of 25%. Environmental factors and antenna gain were identified as critical for optimizing transmission power and communication reliability. This research underscores the potential of advanced IoT applications in extending internet connectivity and improving air quality management across various sectors, paving the way for smarter urban environments and public health initiatives.
Downloads
References
Abrardo, A., & Pozzebon, A. (2019). A multi-hop LoRa linear sensor network for the monitoring of underground environments: The case of the medieval aqueducts in Siena, Italy. Sensors, 19(2), 402. https://doi.org/10.3390/s19020402
Adelantado, F., Vilajosana, X., Tuset-Peiró, P., Martínez, B., Melia-Seguí, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40. https://doi.org/10.1109/MCOM.2017.1600613
Akyildiz, I. F., & Jornet, J. M. (2010). The Internet of nano-things. IEEE Wireless Communications, 17(6), 58–63. https://doi.org/10.1109/MWC.2010.5675779
Belli, L., Cirani, S., Davoli, L., Ferrari, G., Melegari, L., & Picone, M. (2015). Design and deployment of an IoT application-oriented testbed. Computer, 48(9), 32-40. https://doi.org/10.1109/MC.2015.253
Boonlom, K., Khonrang, J., Rungraungsilp, S., Amsdon, T., Robertson, I., & Somjit, N. (2024). Advancing in-pipe robot communication with high-speed OWC transceiver front-end circuit: Experimental insights and prospects. In Proceedings of the 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–6). IEEE. https://doi.org/10.1109/ECTI-CON60892.2024.10595010
Boonlom, K., Pratumvinit, T., & Akkaraekthalin, P. (2009). A compact microstrip two-layers bandpass filter using improved interdigital-loop resonators. In Proceedings of the 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT) (pp. 367–370). IEEE. https://doi.org/10.1109/RFIT.2009.5383685
Boonlom, K., Viratikul, R., Robertson, I. D., Amsdon, T., Chudpooti, N., & Somjit, N. (2023). Illumination and bandwidth control circuit for LED optical wireless transmitter driver integrated with passive second-order equaliser for pipe robot application. In Proceedings of the 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C) (pp. 1–5). IEEE. https://doi.org/10.1109/RI2C60382.2023.10356036
Boonlom, K., Chomtong, P., Zhang, W., Amsdon, T. J., Oberhammer, J., Robertson, I. D., & Somjit, N. (2024a). Advanced studies on optical wireless communications for in-pipe environments: Bandwidth exploration and thermal management. IEEE Access, 12, 80607–80632. https://doi.org/10.1109/ACCESS.2024.3410465
Boonlom, K., Khonrang, J., Siri, A., & Klinhnu, J. (2021). The design and development of microgrid electrical power supply for seismo sensor with an artificial perceptron neural network. Review of International Geographical Education (RIGEO), 11(9), 2711–2721. https://doi.org/10.48047/rigeo.11.09.238
Boonlom, K., Khonrang, J., Amsdon, T., Robertson, I., & Somjit, N. (2022). Active pre-equalizer for broadband optical wireless communication integrated with RF amplifier. In Proceedings of the 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C) (pp. 251–254). IEEE. https://doi.org/10.1109/RI2C56397.2022.9910315
Boonlom, K., Chudpooti, N., Rungraungsilp, S., Zhang, W., Amsdon, T., Oberhammer, J., & Somjit, N. (2025). Multiwavelength Optical Sensing of Water-Level Stratification in Closed Plastic Pipelines Using Signal Attenuation and CIR Analysis. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2025.3598923
Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., … Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?. Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
European Environment Agency. (2021). Air quality in Europe — 2021 report (EEA Report No. 10/2021). European Environment Agency. https://www.eea.europa.eu/publications/air-quality-in-europe-2021
Greenpeace Southeast Asia. (2022, June 2). The burden of air pollution in Thailand 2021 report. Greenpeace Southeast Asia. https://www.greenpeace.org/southeastasia/publication/45439/the-burden-of-air-pollution-in-thailand-2021report/
Hossain, M. S., & Muhammad, G. (2016). Cloud-assisted industrial internet of things (iiot)–enabled framework for health monitoring. Computer Networks, 101, 192-202. https://doi.org/10.1016/j.comnet.2016.01.009
Industrial Air Pollution. (2014, April 29). Industrial air pollution has high economic cost. European Environment Agency. https://www.eea.europa.eu/media/newsreleases/industrial-air-pollution-has-high
Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781
Jayaraman, P. P., Yavari, A., Georgakopoulos, D., Morshed, A., & Zaslavsky, A. (2016). Internet of Things platform for smart farming: Experiences and lessons learnt. Sensors, 16(11), 1884. https://doi.org/10.3390/s16111884
Khonrang, J., Somphruek, M., Duangnakhorn, P., Siri, A., & Boonlom, K. (2023). Experimental and case studies of long-distance multi-hopping data transmission techniques for wildfire sensors using the LoRa-based mesh sensor network. International Journal of Electronics and Telecommunications, 69(1), 419–424. https://doi.org/10.24425/ijet.2023.144378
Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 1–14. https://doi.org/10.1007/s10708-013-9516-8
Ksentini, A., & Nikaein, N. (2017). Toward enforcing network slicing on RAN: Flexibility and resources abstraction. IEEE Communications Magazine, 55(6), 102–108. https://doi.org/10.1109/MCOM.2017.1601119
Kumar, P., Skouloudis, A. N., Bell, M., Viana, M., Carotta, M. C., Biskos, G., & Morawska, L. (2016). Real-time sensors for indoor air monitoring: Reliability and end-user perspective. Environment International, 94, 317–326. https://doi.org/10.1016/j.scitotenv.2016.04.032
Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems Frontiers, 17(2), 243–259. https://doi.org/10.1007/s10796-014-9492-7
Lin, K., Chen, M., Deng, J., Hassan, M. M., Fortino, G., & Li, W. (2017). Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Transactions on Automation Science and Engineering, 14(3), 1294–1307. https://doi.org/10.1109/TASE.2016.2543242
Magno, M., & Benini, L. (2014, October). An ultra low power high sensitivity wake-up radio receiver with addressing capability. In 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 92-99). IEEE. https://doi.org/10.1109/WiMOB.2014.6962155
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?. Environment International, 116, 286–299. https://doi.org/10.1016/j.envint.2018.04.018
Ndaguba, E., Cilliers, J., Ghosh, S., Herath, S., & Mussi, E. T. (2023). Operability of smart spaces in urban environments: A systematic review on enhancing functionality and user experience. Sensors, 23(15), 6938. https://doi.org/10.3390/s23156938
Olasupo, T., Otero, C. E., Olasupo, K. O., & Kostanic, I. (2016). Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Transactions on Antennas and Propagation, 64(9), 4012-4021. https://doi.org/10.1109/TAP.2016.2583507
Popoola, O. A., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I., Stettler, M. E., ... & Jones, R. L. (2018). Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmospheric environment, 194, 58-70. https://doi.org/10.1016/j.atmosenv.2018.09.030
Qadir, Q. M., Rashid, T. A., Al-Salihi, N. K., Ismael, B., Kist, A. A., & Zhang, Z. (2018). Low power wide area networks: A survey of enabling technologies, applications and interoperability needs. IEEE Access, 6, 77454–77473. https://doi.org/10.1109/ACCESS.2018.2883151
Sha, K., Wei, W., Yang, T. A., Wang, Z., & Shi, W. (2018). On security challenges and open issues in Internet of Things. Future Generation Computer Systems, 83, 326–337. https://doi.org/10.1016/j.future.2018.01.059
Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends, and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, 23022–23040. https://doi.org/10.1109/ACCESS.2020.2970118
Vijay, P. J., Madhuri, A., Sri, G. M., & Prasad, Y. S. V. S. N. (2023, March). A Survey on IOT Based Air Pollution Monitoring System. In 2023 4th International Conference on Signal Processing and Communication (ICSPC) (pp. 52-55). IEEE. https://doi.org/10.1109/ICSPC57692.2023.10125940
Viratikul, R., Boonlom, K., Robertson, I., Amsdon, T., Janpugdee, P., & Somjit, N. (2024). Design and evaluation of optical wireless communication systems for underwater IoT applications. In Proceedings of the 11th International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 1–6). IEEE. https://doi.org/10.1109/WINCOM62286.2024.10655875
World Health Organization. (2021). Air pollution. Retrieved August 20, 2023, from https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/
Zanella, A., Bui, N., Castellani, A., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




