Blockchain Framework for Secure IoT Operations in Military Applications: Integrating LoRaWAN and Helium Network

Authors

  • Jebarani Evangeline S Associate Professor, Department of Electrical and Electronics Engineering, SNS College of Engineering, Coimbatore, Tamil Nadu, India.
  • Krishna Prakash Arunachalam Universidad Tecnológica Metropolitana
  • Seethalakshmi V R.M.K. College of Engineering and Technology
  • Senthil Kumar A Dayananda Sagar University
  • Reeda Lenus C S.A. Engineering College
  • Saranya R Velammal College of Engineering and Technology

DOI:

https://doi.org/10.37385/jaets.v7i1.6325

Keywords:

Internet of Things (IoTs), Military application, LoRaWAN, Helium Network, cyber security, Blockchain, Proof of Authority Algorithm, Services

Abstract

The traditional IoT is typically based on centralized systems that are susceptible to multiple cyberattacks and a single point of failure. Modern industries regularly embrace block chain technology due to its decentralization and security. This study suggests a block chain-based system that guarantees reliable and secure operations. They suggest a secure compact block chain for handling access to precious information through instruments and controllers. Based on realistic military applications, the current investigation makes evidence for the benefits of merging LoRaWAN and Helium Network technology, and also demonstrates how deliberate research and analysis can bridge the block chain gap for military cyber defense.  To improve the proposed system's computing efficiency, the block chain network has devised a rapid and power-saving decision technique for proof of authentication. The suggested framework for smart industrial environments has survived extensive testing and study to be sustainable. Use the suggested configuration to convert a standard processing system into an intelligent and secure industrial platform. This article aims towards assessing the practicality of Proof of Authority in the block chains network as a consensus algorithm. There are numerous techniques available for creating a consensus among the nodes.

Downloads

Download data is not yet available.

References

Ahmad, R. W., Hasan, H., Yaqoob, I., Salah, K., Jayaraman, R., & Omar, M. (2021). Blockchain for aerospace and defense: Opportunities and open research challenges. Computers & Industrial Engineering, 151, 106982. https://doi.org/10.1016/j.cie.2020.106982

Akter, R., Golam, M., Doan, V. S., Lee, J. M., & Kim, D. S. (2022). Iomt-net: Blockchain-integrated unauthorized uav localization using lightweight convolution neural network for internet of military things. IEEE Internet of Things Journal, 10(8), 6634-6651. https://doi.org/10.1109/JIOT.2022.3176310

Aseri, V., Chowdhary, H., Chaudhary, N. K., Pandey, S. K., & Kumar, V. (2024). Revolutionizing military technology: How the fusion of BlockChain and quantum computing is driving in defense application. In Sustainable security practices using blockchain, quantum and post-quantum technologies for real time applications (pp. 193-203). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0088-2_10

Ayan, B., Guner, E., & Son-Turan, S. (2022). Blockchain technology and sustainability in supply chains and a closer look at different industries: A mixed method approach. Logistics, 6(4), 85. https://doi.org/10.3390/logistics6040085

Bataineh, M. R., Mardini, W., Khamayseh, Y. M., & Yassein, M. M. B. (2022). Novel and secure blockchain framework for health applications in IoT. Ieee Access, 10, 14914-14926. https://doi.org/10.1109/ACCESS.2022.3147795

Bhawna, Gupta, P., Rai, P., & Chauhan, A. (2023). Blockchain application in consumer services: A review and future research agenda. International Journal of Consumer Studies, 47(6), 2417-2450. https://doi.org/10.1111/ijcs.12940

Ceccarelli, A., Cinque, M., Esposito, C., Foschini, L., Giannelli, C., & Lollini, P. (2020). FUSION—Fog computing and blockchain for trusted industrial Internet of Things. IEEE Transactions on Engineering Management, 69(6), 2944-2958. https://doi.org/10.1109/TEM.2020.3024105

De Villiers, C., Kuruppu, S., & Dissanayake, D. (2021). A (new) role for business–Promoting the United Nations’ Sustainable Development Goals through the internet-of-things and blockchain technology. Journal of business research, 131, 598-609. https://doi.org/10.1016/j.jbusres.2020.11.066

Dhar, S., & Bose, I. (2021). Securing IoT devices using zero trust and blockchain. Journal of Organizational Computing and Electronic Commerce, 31(1), 18-34. https://doi.org/10.1080/10919392.2020.1831870

Galan, J. J., Carrasco, R. A., & LaTorre, A. (2022). Military applications of machine learning: A bibliometric perspective. Mathematics, 10(9), 1397. https://doi.org/10.3390/math10091397

Honar Pajooh, H., Rashid, M., Alam, F., & Demidenko, S. (2021). Hyperledger fabric blockchain for securing the edge internet of things. Sensors, 21(2), 359. https://doi.org/10.3390/s21020359

Hope, E. T. (2024). Using relays for utilizing and extending LoRaWAN networks with the use of Altibox LoRaWAN infrastructure for internet of things.

Huo, R., Zeng, S., Di, Y., Cheng, X., Huang, T., Yu, F. R., & Liu, Y. (2022). A blockchain-enabled trusted identifier co-governance architecture for the industrial internet of things. IEEE Communications Magazine, 60(6), 66-72. https://doi.org/10.1109/MCOM.001.2100448

Khan, A. A., Laghari, A. A., Shaikh, Z. A., Dacko-Pikiewicz, Z., & Kot, S. (2022). Internet of Things (IoT) security with blockchain technology: A state-of-the-art review. IEEE Access, 10, 122679-122695. https://doi.org/10.1109/ACCESS.2022.3223370

Krueger, J., & Bergmaier, P. (2024, June). Testing Next-Generation Telemetry Using LoRaWAN On High-Altitude Balloons. In Academic High Altitude Conference (Vol. 2024, No. 2). Iowa State University Digital Press. https://doi.org/10.31274/ahac.18022

Latif, S., Idrees, Z., Ahmad, J., Zheng, L., & Zou, Z. (2021). A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things. Journal of Industrial Information Integration, 21, 100190. https://doi.org/10.1016/j.jii.2020.100190

Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., & Buyya, R. (2021). Blockchain-based trust management in cloud computing systems: a taxonomy, review and future directions. Journal of Cloud Computing, 10(1), 35. https://doi.org/10.1186/s13677-021-00247-5

Mohril, R. S., Solanki, B. S., Lad, B. K., & Kulkarni, M. S. (2021). Blockchain enabled maintenance management framework for military equipment. IEEE Transactions on Engineering Management, 69(6), 3938-3951. https://doi.org/10.1109/TEM.2021.3099437

Mtetwa, N. S., Tarwireyi, P., Sibeko, C. N., Abu-Mahfouz, A., & Adigun, M. (2022). Blockchain-based security model for LoRaWAN firmware updates. Journal of Sensor and Actuator Networks, 11(1), 5. https://doi.org/10.3390/jsan11010005

Pavithran, D., Shaalan, K., Al-Karaki, J. N., & Gawanmeh, A. (2020). Towards building a blockchain framework for IoT. Cluster Computing, 23(3), 2089-2103. https://doi.org/10.1007/s10586-020-03059-5

Pioro, L., Sychowiec, J., Kanciak, K., & Zielinski, Z. (2024). Application of attribute-based encryption in military internet of things environment. Sensors, 24(18), 5863. https://doi.org/10.3390/s24185863

Rammouz, V., Khoury, J., Klisura, D., Pour, M. S., Pour, M. S., Fachkha, C., & Bou-Harb, E. (2023, June). Helium-based iot devices: Threat analysis and internet-scale exploitations. In 2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 206-211). IEEE. https://doi.org/10.1109/WiMob58348.2023.10187762

Rathee, G., Sharma, A., Kumar, R., & Iqbal, R. (2019). A secure communicating things network framework for industrial IoT using blockchain technology. Ad Hoc Networks, 94, 101933. https://doi.org/10.1016/j.adhoc.2019.101933

Reyneke, M. A., Reith, M. G., & Mullins, B. E. (2023, March). LoRaWAN & the helium blockchain: A study on military IoT deployment. In International Conference on Cyber Warfare and Security (pp. 327-XVI). Academic Conferences International Limited. https://doi.org/10.34190/iccws.18.1.944

Sharma, G., Sharma, D. K., & Kumar, A. (2023). Role of cybersecurity and Blockchain in battlefield of things. Internet Technology Letters, 6(3), e406. https://doi.org/10.1002/itl2.406

Sidorov, M., Khor, J. H., Wong, A. C. H., Lee, Y. Y., & Li, J. (2024). A Lightweight Authentication Scheme for LoRaWAN Nodes Represented as On-Chain Nonfungible Tokens. IEEE Sensors Journal, 24(17), 28222-28232. https://doi.org/10.1109/JSEN.2024.3431432

Singh, R., Dwivedi, A. D., & Srivastava, G. (2020). Internet of things based blockchain for temperature monitoring and counterfeit pharmaceutical prevention. Sensors, 20(14), 3951. https://doi.org/10.3390/s20143951

Sokolovic, V. S., & Markovic, G. B. (2023). Internet of Things in military applications. Vojnotehnicki glasnik, 71(4), 1148-1171. https://doi.org/10.5937/vojtehg71-46785

Suhail, S., Hussain, R., Jurdak, R., & Hong, C. S. (2021). Trustworthy digital twins in the industrial internet of things with blockchain. IEEE Internet Computing, 26(3), 58-67. https://doi.org/10.1109/MIC.2021.3059320

Tenneti, S., Jakhar, R., & Harfoush, K. (2024, January). Reactive Jamming of the Helium Network. In 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC) (pp. 296-301). IEEE. https://doi.org/10.1109/CCNC51664.2024.10454757

Viriyasitavat, W., Da Xu, L., Bi, Z., & Sapsomboon, A. (2019). New blockchain-based architecture for service interoperations in internet of things. IEEE Transactions on Computational Social Systems, 6(4), 739-748. https://doi.org/10.1109/TCSS.2019.2924442

Wang, C., Cai, Z., & Li, Y. (2022). Sustainable blockchain-based digital twin management architecture for IoT devices. IEEE Internet of Things Journal, 10(8), 6535-6548. https://doi.org/10.1109/JIOT.2022.3153653

Wrona, K., & Jarosz, M. (2019, April). Use of blockchains for secure binding of metadata in military applications of IoT. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (pp. 213-218). IEEE. https://doi.org/10.1109/WF-IoT.2019.8767315

Wu, Y., Jin, X., Yang, H., Tu, L., Ye, Y., & Li, S. (2022). Blockchain-based Internet of Things: Machine learning tea sensing trusted traceability system. Journal of Sensors, 2022, 8618230. https://doi.org/10.1155/2022/8618230

Xie, L., Ding, Y., Yang, H., & Wang, X. (2019). Blockchain-based secure and trustworthy Internet of Things in SDN-enabled 5G-VANETs. Ieee Access, 7, 56656-56666. https://doi.org/10.1109/ACCESS.2019.2913682

Yadav, A. K. S., Sivaraju, S. S., Radha, B., Sushith, M., Srithar, S., & Kanchana, M. (2024). Malicious node detection using SVM and secured data storage using blockchain in WSN. International Journal of System Assurance Engineering and Management, 1-11. https://doi.org/10.1007/s13198-024-02564-9

Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Karimipour, H., Srivastava, G., & Aledhari, M. (2020). Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet of Things Journal, 8(8), 6406-6415. https://doi.org/10.1109/JIOT.2020.3015382

Yu, Y., Li, Y., Tian, J., & Liu, J. (2019). Blockchain-based solutions to security and privacy issues in the internet of things. IEEE Wireless Communications, 25(6), 12-18. https://doi.org/10.1109/MWC.2017.1800116

Zakaret, C., Peladarinos, N., Cheimaras, V., Tserepas, E., Papageorgas, P., Aillerie, M., ... & Agavanakis, K. (2022). Blockchain and secure element, a hybrid approach for secure energy smart meter gateways. Sensors, 22(24), 9664. https://doi.org/10.3390/s22249664

Zhu, Y., Zhang, X., Ju, Z. Y., & Wang, C. C. (2020, April). A study of blockchain technology development and military application prospects. In Journal of Physics: Conference Series (Vol. 1507, No. 5, p. 052018). IOP Publishing. https://doi.org/10.1088/1742-6596/1507/5/052018

Downloads

Published

2025-12-29

How to Cite

S, J. E., Arunachalam, K. P., V, S., A, S. K., C, R. L., & R, S. (2025). Blockchain Framework for Secure IoT Operations in Military Applications: Integrating LoRaWAN and Helium Network . Journal of Applied Engineering and Technological Science (JAETS), 7(1), 631–646. https://doi.org/10.37385/jaets.v7i1.6325