SiAkif-Bots: Gemini AI for Academic Service Chatbots

Authors

  • Bunga Laelatul Muna Telkom University
  • Sudianto Sudianto Telkom University
  • Muhammad Lulu Latif Usman Telkom University

DOI:

https://doi.org/10.37385/jaets.v6i2.6728

Keywords:

Academic services, Artificial Intelligence, chatbot, Gemini, LLM, Telegram

Abstract

Academic services are an important element in education, as they provide students with access to information and support. At Telkom University Purwokerto, there are obstacles to the efficiency of academic services, especially due to information delays and the high burden of onsite services. To overcome this challenge, a Telegram-based chatbot, "SiAkif," was developed using the Large Language Model (LLM) model from Gemini AI. Gemini AI's selection is based on its ability to understand complex conversational contexts and generate accurate and relevant responses. This research aims to implement the Telegram chatbot that utilizes Gemini AI for Indonesian-language academic services. The implementation showed satisfactory results, with the chatbot "SiAkif" recording an average BLEU score of 0.88, which reflects good performance and response. This chatbot effectively reduces information delays, expands service accessibility, and improves student experience in interacting with institutions. Through "SiAkif," the institution is expected to strengthen the interaction between students and academic services, making it a potential solution for digital transformation in education.

Downloads

Download data is not yet available.

References

Abdulridha, M. A., & Mohamed, A. H. J. (2024). Virtual Agent (Chatbot) using Open Artificial Intelligence.

Afandi, W., Saputro, S. N., Kusumaningrum, A. M., Adriansyah, H., Kafabi, M. H., & Sudianto, S. (2022). Klasifikasi Judul Berita Clickbait menggunakan RNN-LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2), Article 2. https://doi.org/10.30591/jpit.v7i2.3401

Ahmed, I., & Islam, R. (2024). Gemini-the most powerful LLM: Myth or Truth. https://doi.org/10.36227/techrxiv.171177477.70151414/v1

Bakti, F., Dendi, A., Amir, A., & Isnanto, B. (2024). Mengoptimalkan Motivasi Belajar: Pengaruh Signifikan Kualitas Pendidikan dan Kepuasan Mahasiswa. Nomico, 1(3), 15–24. https://doi.org/10.62872/xjc0b510

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805

Farquhar, S., Kossen, J., Kuhn, L., & Gal, Y. (2024). Detecting hallucinations in large language models using semantic entropy. Nature, 630(8017), 625–630. https://doi.org/10.1038/s41586-024-07421-0

Haque, S., Eberhart, Z., Bansal, A., & McMillan, C. (2022). Semantic Similarity Metrics for Evaluating Source Code Summarization (arXiv:2204.01632). arXiv. https://doi.org/10.48550/arXiv.2204.01632

Hassanin, M., Keshk, M., Salim, S., Alsubaie, M., & Sharma, D. (2024). PLLM-CS: Pre-trained Large Language Model (LLM) for Cyber Threat Detection in Satellite Networks (arXiv:2405.05469). arXiv. https://doi.org/10.48550/arXiv.2405.05469

Heryanto, Y., Farahdinna, F., & Wijanarko, S. (2024). Evaluasi Responsivitas dan Akurasi: Perbandingan Kinerja ChatGPT dan Google BARD dalam Menjawab Pertanyaan seputar Python. 9.

Imamura, K., & Sumita, E. (2019). Recycling a Pre-trained BERT Encoder for Neural Machine Translation. In A. Birch, A. Finch, H. Hayashi, I. Konstas, T. Luong, G. Neubig, Y. Oda, & K. Sudoh (Eds.), Proceedings of the 3rd Workshop on Neural Generation and Translation (pp. 23–31). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-5603

Jhaerol, M. R., & Sudianto, S. (2023). Implementation of Chatbot for Merdeka Belajar Kampus Merdeka Program using Long Short-Term Memory. Jurnal Nasional Pendidikan Teknik Informatika?: JANAPATI, 12(2), Article 2. https://doi.org/10.23887/janapati.v12i2.58794

Kavaz, E., Puig, A., & Rodríguez, I. (2023). Chatbot-Based Natural Language Interfaces for Data Visualisation: A Scoping Review. Applied Sciences, 13(12), 7025. https://doi.org/10.3390/app13127025

Khennouche, F., Elmir, Y., Himeur, Y., Djebari, N., & Amira, A. (2024). Revolutionizing generative pre-traineds: Insights and challenges in deploying ChatGPT and generative chatbots for FAQs. Expert Systems with Applications, 246, 123224. https://doi.org/10.1016/j.eswa.2024.123224

Kishore, K. S., & Shaik, R. (2024). Evaluating Telugu Proficiency in Large Language Models_ A Comparative Analysis of ChatGPT and Gemini (arXiv:2404.19369). arXiv. http://arxiv.org/abs/2404.19369

Kusuma, S. F., Badriyah, T., Wibowo, P., Faradisa, R., & Huda, S. (2023). Optimalisasi Fitur Pencarian Pada E-Catalog Menggunakan Query Expansion Dan Algoritma TF-IDF. Techno.Com, 22(3), 703–711. https://doi.org/10.33633/tc.v22i3.8698

Lin, X., Wang, W., Li, Y., Yang, S., Feng, F., Wei, Y., & Chua, T.-S. (2024). Data-efficient Fine-tuning for LLM-based Recommendation (arXiv:2401.17197). arXiv. https://doi.org/10.48550/arXiv.2401.17197

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2021). What Makes Good In-Context Examples for GPT-3? (arXiv:2101.06804). arXiv. https://doi.org/10.48550/arXiv.2101.06804

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., & Shazeer, N. (2018). Generating Wikipedia by Summarizing Long Sequences (arXiv:1801.10198). arXiv. https://doi.org/10.48550/arXiv.1801.10198

Lubis, A. T. U. Br., Harahap, N. S., Agustian, S., Irsyad, M., & Afrianty, I. (2024). Question Answering System pada Chatbot Telegram Menggunakan Large Language Models (LLM) dan Langchain (Studi Kasus UU Kesehatan): Question Answering System on Telegram Chatbot Using Large Language Models (LLM) and Langchain (Case Study: Health Law). MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3), 955–964. https://doi.org/10.57152/malcom.v4i3.1378

Muliyono, M., & Sumijan, S. (2021). Identifikasi Chatbot dalam Meningkatkan Pelayanan Online Menggunakan Metode Natural Language Processing. Jurnal Informatika Ekonomi Bisnis, 142–147. https://doi.org/10.37034/infeb.v3i4.102

Naufal, A. B., Sudianto, S., & Fachri, M. A. A. (2023). Implementation of Chatbot System on Tourism Objects in Banyumas Regency with AIML and Chatterbot. 5.

Nguyen, T. T., Le, A. D., Hoang, H. T., & Nguyen, T. (2021). NEU-chatbot: Chatbot for admission of National Economics University. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100036

Nosenko, O., Nosenko, Y., & Shevchuk, R. (2022). Telegram Messenger for Supporting Educational Process Under the Conditions of Quarantine Restrictions. In O. Ignatenko, V. Kharchenko, V. Kobets, H. Kravtsov, Y. Tarasich, V. Ermolayev, D. Esteban, V. Yakovyna, & A. Spivakovsky (Eds.), ICTERI 2021 Workshops (Vol. 1635, pp. 308–319). Springer International Publishing. https://doi.org/10.1007/978-3-031-14841-5_20

Omarov, B., Zhumanov, Z., Gumar, A., & Kuntunova, L. (2023). Artificial Intelligence Enabled Mobile Chatbot Psychologist using AIML and Cognitive Behavioral Therapy. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.0140616

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A Method for Automatic Evaluation of Machine Translation. In P. Isabelle, E. Charniak, & D. Lin (Eds.), Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (pp. 311–318). Association for Computational Linguistics. https://doi.org/10.3115/1073083.1073135

Parhusip, M., Sudianto, S., & Laksana, T. G. (2023). Sentiment Analysis of the Public Towards the Kanjuruhan Tragedy with the Support Vector Machine Method. JUITA?: Jurnal Informatika, 11(2), Article 2. https://doi.org/10.30595/juita.v11i2.17405

Prahesti, R. T., Ruliana, P., & Subarsa, K. Y. (2021). Kualitas Pelayanan Akademik Terhadap Citra Perguruan Tinggi.

Pratama, T., & Rjito, S. (2021). IndoXLNet: Pre-Trained Language Model for Bahasa Indonesia. International Journal of Engineering Trends and Technology, 70(5), 367–381. https://doi.org/10.14445/22315381/IJETT-V70I5P240

Qalimaturrahmah, M., & Santoso, D. B. (2024). Aplikasi Layanan dan Informasi Akademik Berbasis Chatbot Telegram Menggunakan Natural Language Processing. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 8(2), 434–443. https://doi.org/10.35870/jtik.v8i2.1887

Rachmat, N., & Kesuma, D. P. (2024). Implementasi Large Language Models Gemini Pada Pengembangan Aplikasi Chatbot Berbasis Android.

S, A., A, S. A., R, A., S, D., & Sekar, R. (2023). A Novel AI-based chatbot Application for Personalized Medical Diagnosis and review using Large Language Models. 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), 1–5. https://doi.org/10.1109/RMKMATE59243.2023.10368616

Saputra, E. D., Harahap, N. S., Jasril, J., & Yusra, Y. (2024). Question Answering Al-Qur’an Menggunakan Generative Pre-Trained Transformer 3.5 Berbasis Chatbot Telegram. Jutisi?: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, 13(1), 550. https://doi.org/10.35889/jutisi.v13i1.1879

Singh, R. R., & Singh, D. P. (2024). Chatbot: Chatbot Assistant. Journal of Management and Service Science (JMSS), 1–19. https://doi.org/10.54060/a2zjournals.jmss.57

Sudianto, S. (2022). Analisis Kinerja Algoritma Machine Learning Untuk Klasifikasi Emosi. Building of Informatics, Technology and Science (BITS), 4(2), Article 2. https://doi.org/10.47065/bits.v4i2.2261

Sudianto, S., Masheli, J. A. A., Nugroho, N., Ananda Rumpoko, R. W., & Akhmad, Z. (2022). Comparison of Support Vector Machines and K-Nearest Neighbor Algorithm Analysis of Spam Comments on Youtube Covid Omicron. JURNAL TEKNIK INFORMATIKA, 15(2), 110–118. https://doi.org/10.15408/jti.v15i2.24996

Sudianto, S., Sripamuji, A. D., Ramadhanti, I. R., Amalia, R. R., Saputra, J., & Prihatnowo, B. (2022). Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasifikasi Topik Berita. Jurnal Nasional Pendidikan Teknik Informatika?: JANAPATI, 11(2), Article 2.

Wijaya, W. P. C., & Achlaq, M. M. (2023). Implementasi API Bot Telegram untuk Sistem Notifikasi Libreanms pada Perusahaan BLIP Integrator. 7(6).

Wo?k, K., & Marasek, K. (2014). Enhanced Bilingual Evaluation Understudy. Lecture Notes on Information Theory. https://doi.org/10.12720/lnit.2.2.191-197

Downloads

Published

2025-06-08

How to Cite

Muna, B. L., Sudianto, S., & Usman, M. L. L. (2025). SiAkif-Bots: Gemini AI for Academic Service Chatbots. Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1237–1253. https://doi.org/10.37385/jaets.v6i2.6728