Fabrication and Measurement of a Circularly Polarized All-Metal Patch array and Single PRS Layer based Fabry-Perot Antenna for NASA Interplanetary CubeSat missions
DOI:
https://doi.org/10.37385/jaets.v7i1.6904Keywords:
Fabry Perot Antennas, High Gain Antennas, LHCP and RHCP, NASA Interplanetary CubeSatsAbstract
When it comes to pushing the limits of small-scale technologies for interplanetary space missions, NASA has demonstrated that the dream is achievable. NASA has launched a number of interplanetary CubeSat missions, including as MarCO A and B, INSPIRE, LOGIC, and LunaH-map CubeSats, successfully during the past 10 years. Since the antennas of these NASA-certified satellites are responsible for defining the range of communication with Earth, they are the main topic of this study. A high gain and circularly polarized all-metal patch array with PRS-based Fabry Perot antenna is proposed in this paper for NASA’s interplanetary CubeSat missions. The strength of this approach stems from its dependence on a wholly novel concept for developing a durable antenna that is harmoniously compatible with NASA's goals. The resulting all-metal patch array was well-fabricated and tested in an anechoic chamber and using a VNA, and showed measured realized gain of 35.84 dBi and AR of 1.629 dB at 11.5 GHz with 3dB-AR bandwidth higher than 3 GHz. Additionally, the Fabry-Perot design enhances the gains, achieves AR of 0.29 dB at 12.1 GHz, and exhibits RHCP and LHCP making this new technique as suitable candidates for NASA's interplanetary CubeSat missions.
Downloads
References
Abdulkarim, Y. I., Awl, H. N., Muhammadsharif, F. F., Karaaslan, M., Mahmud, R. H., Hasan, S. O., Isik, O., Luo, H., & Huang, S. (2020). A low-profile antenna based on single-layer metasurface for Ku-band applications. International Journal of Antennas and Propagation, 2020(1), 8813951. https://doi.org/10.1155/2020/8813951
Autry, G. (2024). The United States in space: Strategies, capabilities, and vision. Asia Policy, 19(4), 6–18. https://doi.org/10.1353/asp.2024.a942827
Azizi, Y., Komjani, N., Karimipour, M., & Aryanian, I. (2019). Demonstration of a self-polarizing dual-band single-feed circularly polarized Fabry-Perot cavity antenna with a broadband axial ratio. AEU - International Journal of Electronics and Communications, 111, 152909. https://doi.org/10.1016/j.aeue.2019.152909
Balaram, J., Aung, M., & Golombek, M. P. (2021). The Ingenuity helicopter on the Perseverance rover. Space Science Reviews, 217(1), 56. https://doi.org/10.1007/s11214-021-00815-w
Benhmimou, B., Omari, F., Gupta, N., El Khadiri, K., Ahl Laamara, R., & El Bakkali, M. (2024). Air-gap reduction and antenna positioning of an X-band bow tie slot antenna on 2U CubeSats. Journal of Applied Engineering and Technological Science, 6(1), 86–102. https://doi.org/10.37385/jaets.v6i1.6158
Calleau, A., Garcia-Vigueras, M., Legay, H., Sauleau, R., & Ettorre, M. (2019). Circularly polarized Fabry-Perot antenna using a hybrid leaky-wave mode. IEEE Transactions on Antennas and Propagation, 67(9), 5867–5876. https://doi.org/10.1109/TAP.2019.2920266
Campana, C. T. (2023). Interplanetary trajectory design in high-fidelity model: Application to deep-space CubeSats' cruises. Materials Research Proceedings, 33, 185–192. https://doi.org/10.21741/9781644902677-27
Cao, W., Lv, X., Wang, Q., Zhao, Y., & Yang, X. (2019). Wideband circularly polarized Fabry-Perot resonator antenna in Ku-band. IEEE Antennas and Wireless Propagation Letters, 18(4), 586–590. https://doi.org/10.1109/LAWP.2019.2896940
Cao, W., Wang, Q., Jin, J., & Li, H. (2018). Magneto-electric dipole antenna (MEDA)-fed Fabry-Perot resonator antenna (FPRA) with broad gain bandwidth in Ku band. IEEE Access, 6, 65557–65562. https://doi.org/10.1109/ACCESS.2018.2878054
Creech, S., Guidi, J., & Elburn, D. (2022). Artemis: An overview of NASA's activities to return humans to the Moon. In 2022 IEEE Aerospace Conference (AERO) (pp. 1–7). IEEE.
El Bakkali, M., El Bekkali, M., Gaba, G. S., Guerrero, J. M., Kansal, L., & Masud, M. (2021). Fully integrated high gain S-band triangular slot antenna for CubeSat communications. Electronics, 10(2), 156. https://doi.org/10.3390/electronics10020156
Freeman, A. (2020). Exploring our solar system with CubeSats and SmallSats: The dawn of a new era. CEAS Space Journal, 12(4), 491–502. https://doi.org/10.1007/s12567-020-00298-5
Ge, Y., & Qin, K. (2018). Wideband high-gain circularly polarised antenna based on Fabry-Perot concept and a conical horn. In 12th European Conference on Antennas and Propagation (EuCAP 2018) (pp. 1–3). https://doi.org/10.1049/cp.2018.0614
Kramer, D. (2021). The undermining of science is Trump's legacy. Physics Today, 74(3), 24–27. https://doi.org/10.1063/PT.3.4697
Lambright, W. H. (2024). Leading the Moon to Mars program: James Bridenstine as NASA administrator 2018–2021. Space Policy, 68, 101634. https://doi.org/10.1016/j.spacepol.2024.101634
Liu, Z. G., Lu, W. B., & Yang, W. (2017). Enhanced bandwidth of high directive emission Fabry-Perot resonator antenna with tapered near-zero effective index using metasurface. Scientific Reports, 7, 11455. https://doi.org/10.1038/s41598-017-11141-z
Luo, C. W., Jiao, Y. C., Zhao, G., & Chen, G. T. (2021). Novel low-profile dual-band and dual-polarization Fabry-Perot resonator antenna. International Journal of RF and Microwave Computer-Aided Engineering, 31(4), e22566. https://doi.org/10.1002/mmce.22566
Mateos-Ruiz, P., Hernandez-Escobar, A., Abdo-Sanchez, M. E., & Camacho-Penalosa, C. (2020). Design and fabrication of a Fabry-Perot cavity antenna for the Ku-band. In XXXV Simposium Nacional de la Union Cientifica Internacional de Radio (pp. 1–4). https://hdl.handle.net/10630/19799
Melouki, N., Hocini, A., & Denidni, T. A. (2022). High gain and wideband Fabry-Perot resonator antenna based on a compact single PRS layer. IEEE Access, 10, 96526–96537. https://doi.org/10.1109/ACCESS.2022.3205605
Melouki, N., Hocini, A., & Denidni, T. A. (2022). High-gain and wideband Fabry-Perot resonator antenna based on a pixelated single PRS layer for Ku-band applications. In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 988–989). https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887266
Meriche, M. A., Attia, H., Messai, A., Mitu, S. S. I., & Denidni, T. A. (2019). Directive wideband cavity antenna with single-layer meta-superstrate. IEEE Antennas and Wireless Propagation Letters, 18(9), 1771–1774. https://doi.org/10.1109/LAWP.2019.2929579
Naik, K. K., & Vijaya Sri, P. A. (2018). Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications. Progress in Electromagnetics Research M, 63, 163–173. https://doi.org/10.2528/PIERM17092205
Niaz, M. W., Yin, Y., Bhatti, R. A., Cai, Y. M., & Chen, J. (2020). Wideband Fabry-Perot resonator antenna employing multilayer partially reflective surface. IEEE Transactions on Antennas and Propagation, 69(4), 2404–2409. https://doi.org/10.1109/TAP.2020.3022555
Nguyen, T. K., & Park, I. (2015). Broadband single-feed microstrip antenna in a Fabry-Perot resonator. In 2015 International Workshop on Antenna Technology (iWAT) (pp. 333–334). https://doi.org/10.1109/IWAT.2015.7365276
Omari, F., Benhmimou, B., Hussain, N., Laamara, R. A., Arora, S. K., Guerrero, J. M., & Bakkali, M. E. (2023). UM5 of Rabat to deep space: Ultra-wide band and high-gain only-metal Fabry-Perot antenna for interplanetary CubeSats in IoT infrastructure. In Low Power Architectures for IoT Applications (pp. 153–164). Springer. https://doi.org/10.1007/978-981-99-0639-0_8
Patidar, H., Das, A., & Kar, R. (2024). Small planar antenna array design using length and spacing through MATLAB-HFSS interfacing. International Journal of Communication Systems, 37(9), e5770. https://doi.org/10.1002/dac.5770
Sumathi, K., Lavadiya, S., Yin, P., Parmar, J., & Patel, S. K. (2021). High-gain multiband and frequency-reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wireless Networks, 27, 2131–2146. https://doi.org/10.1007/s11276-021-02567-5
Tanaka, T., Ebinuma, T., Nakasuka, S., Matsumoto, T., Sobukawa, R., & Aoyanagi, Y. (2024). Systems design results of LunaCube: Dual-satellite lunar navigation system with 6U-CubeSats. Acta Astronautica, 216, 318–329. https://doi.org/10.1016/j.actaastro.2023.11.026
Thompson, M. R., Forsman, A., Chikine, S., Peters, B. C., Ely, T., Sorensen, D., Parker, J., & Cheetham, B. (2022). Cislunar navigation technology demonstrations on the CAPSTONE mission. In Proceedings of the 2022 International Technical Meeting of The Institute of Navigation (pp. 471–484). https://doi.org/10.33012/2022.18208
Tollefson, J., Maxmen, A., Remmel, A., Subbaraman, N., & Witze, A. (2021). Joe Biden pursues giant boost for US science spending. Nature, 592(7855), 498–499. https://doi.org/10.1038/d41586-021-00897-0
Veismann, M., Dougherty, C., Rabinovitch, J., Quon, A., & Gharib, M. (2021). Low-density multi-fan wind tunnel design and testing for the Ingenuity Mars helicopter. Experiments in Fluids, 62(9), 193. https://doi.org/10.1007/s00348-021-03278-5
Wu, T., Chen, J., & Wu, P. F. (2020). Broadband and multi-mode Fabry-Perot cavity antenna with gain enhancement. AEU - International Journal of Electronics and Communications, 127, 153440. https://doi.org/10.1016/j.aeue.2020.153440
Xiang, X. Z., Liu, Z. G., & Lu, W. B. (2018). Small-aperture and low sidelobe-level Fabry-Perot resonator antenna. In 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 292–293). https://doi.org/10.1109/APCAP.2018.8538128
Xie, J., Qin, F., Cheng, W., Zhang, H., & Gao, S. (2019). A design of extremely wideband Fabry-Perot cavity antenna. In 2019 IEEE International Conference on Computational Electromagnetics (ICCEM) (pp. 1–3). https://doi.org/10.1109/COMPEM.2019.8779075
Yang, J., Xu, F., & Yao, S. (2018). A dual-frequency Fabry-Perot antenna based on metamaterial lens. In 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1–3). https://doi.org/10.1109/ISAPE.2018.8634017


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




