Enhanced CSMA/CA Protocol-Based Optimal Robust Dynamic Query-Driven Clustering for Improved QoS in Heterogeneous WSNs

Authors

  • Ahmed Mahdi Jubair University of Anbar
  • Akeel Abdulraheem Thulnoon University of Anbar
  • Foad Salem Mubarek University of Anbar

DOI:

https://doi.org/10.37385/jaets.v7i1.6928

Keywords:

Heterogeneous Wireless Sensor Networks, Internet of Things, CSMA/CA Protocol, Optimized Robust Dynamic Query-Driven Clustering, Quality of Service

Abstract

Heterogeneous Wireless Sensor Networks (HWSN) are basically decentralized and distributed systems that playing a crucial role in numerous Internet of Things (IoT) applications, enabling efficient monitoring and data collection. However, these networks often suffer from high latency, routing overheads, and energy consumption. To meet these challenges effectively,  This article proposes an enhanced CSMA/CA protocol based on an Optimal Robust Dynamic Query-Driven Clustering Protocol (ECODQC) model. The enhanced model includes two key components: the improved CSMA/CA protocol, which reduces network collisions, lowering delay and overhead during communication, and the Optimal Robust Dynamic Query-Driven Clustering (ODQC) protocol, which efficiently reduces energy consumption among sensors. In the first phase, the modified CSMA/CA protocol focuses on analyzing communication delays, defining dynamic data transmission, and evaluating data delivery beyond predefined times. In the second phase, the ODQC protocol addresses optimal load balancing and the dynamic process of cluster head selection, aiming to reduce energy consumption during sensor communication. The proposed techniques demonstrate superiority over conventional protocols and are recommended for enhancing the overall quality of service in decentralized, distributed HWSN-based IoT networks.  The ECODQC model is compared against existing methods using the NS2 simulation platform in two scenarios: the varying numbers of nodes and varying speeds. The performance parameters of this proposed model are analyzed in terms of energy efficiency, cluster head efficiency, data success rate, computational delay, and node throughput. The Results demonstrate that ECODQC proves to be superior compared to existing techniques in terms of energy efficiency of 432.23 J, low latency of 85.23 ms, and increased throughput of 813.77 Kbits/s. With these observations, the possibility of using ECODQC with a high level of applicability in real-time IoT scenarios is evident

Downloads

Download data is not yet available.

References

Al-Sulaifanie, A. I., Al-Sulaifanie, B. K., & Biswas, S. (2022). Recent trends in clustering algorithms for wireless sensor networks: A comprehensive review. Computer Communications, 191, 395-424. https://doi.org/10.1016/j.comcom.2022.05.006

Alomari, M. F., Mahmoud, M. A., & Ramli, R. (2022). A systematic review on the energy efficiency of dynamic clustering in a heterogeneous environment of wireless sensor networks (wsns). Electronics, 11(18), 2837. https://doi.org/10.3390/electronics11182837

Alsaqour, R., Ali, E. S., Mokhtar, R. A., Saeed, R. A., Alhumyani, H., & Abdelhaq, M. (2022). Efficient energy mechanism in heterogeneous WSNs for underground mining monitoring applications. IEEE Access, 10, 72907-72924. http://doi.org/10.1109/ACCESS.2022.3188654

Alsharif, M. H., Kelechi, A. H., Jahid, A., Kannadasan, R., Singla, M. K., Gupta, J., & Geem, Z. W. (2024). A comprehensive survey of energy-efficient computing to enable sustainable massive IoT networks. Alexandria Engineering Journal, 91, 12-29. https://doi.org/10.1016/j.aej.2024.01.067

Amuthan, A., & Arulmurugan, A. (2021). Semi-Markov inspired hybrid trust prediction scheme for prolonging lifetime through reliable cluster head selection in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(8), 936-946. https://doi.org/10.1016/j.jksuci.2018.07.006

Babu, S. S., & Geethanjali, N. (2024). Lifetime improvement of wireless sensor networks by employing Trust Index Optimized Cluster Head Routing (TIOCHR). Measurement: Sensors, 32, 101068. https://doi.org/10.1016/j.measen.2024.101068

Amuthan, A., Arulmurugan, A. (2021). Semi-Markov inspired hybrid trust prediction scheme for prolonging lifetime through reliable cluster head selection in WSNs. Journal of King Saud University – Computer and Information Sciences, 33(8), 936–946. https://doi.org/10.1016/j.jksuci.2018.07.006

Babu, S. S., Geethanjali, N. (2024). Lifetime improvement of wireless sensor networks by employing Trust Index Optimized Cluster Head Routing (TIOCHR). Measurement: Sensors, 32, 101068. https://doi.org/10.1016/j.measen.2024.101068

Chaurasiya, S. K., Biswas, A., Nayyar, A., Zaman Jhanjhi, N., Banerjee, R. (2023). DEICA: A differential evolution-based improved clustering algorithm for IoT-based heterogeneous wireless sensor networks. International Journal of Communication Systems, 36(5), e5420. https://doi.org/10.1002/dac.5420

Chaurasiya, S. K., Mondal, S., Biswas, A., Nayyar, A., Shah, M. A., Banerjee, R. (2023). An energy-efficient hybrid clustering technique (EEHCT) for IoT-based multilevel heterogeneous wireless sensor networks. IEEE Access, 11, 25941–25958. https://doi.org/10.1109/access.2023.3254594

Famitafreshi, G., Afaqui, M. S., Melia-Segui, J. (2021). A comprehensive review on energy harvesting integration in IoT systems from MAC layer perspective: Challenges and opportunities. Sensors, 21(9), 3097. https://doi.org/10.3390/s21093097

Fan, B., & Xin, Y. (2025). EBPT-CRA: A clustering and routing algorithm based on energy-balanced path tree for wireless sensor networks. Expert Systems with Applications, 259, 125232. https://doi.org/10.1016/j.eswa.2024.125232

Fang, W., Zhang, W., Chen, W., Liu, Y., & Tang, C. (2020). TMSRS: trust management-based secure routing scheme in industrial wireless sensor network with fog computing. wireless networks, 26(5), 3169-3182. https://doi.org/10.1007/s11276-019-02129-w

Fanian, F., Rafsanjani, M. K., & Saeid, A. B. (2021). Fuzzy multi-hop clustering protocol: Selection fuzzy input parameters and rule tuning for WSNs. Applied Soft Computing, 99, 106923. https://doi.org/10.1016/j.asoc.2020.106923

García-Nájera, A., Zapotecas-Martínez, S., & Miranda, K. (2021). Analysis of the multi-objective cluster head selection problem in WSNs. Applied Soft Computing, 112, 107853. https://doi.org/10.1016/j.asoc.2021.107853

Gong, Y., Wang, J., & Lai, G. (2022). Energy-efficient Query-Driven Clustering protocol for WSNs on 5G infrastructure. Energy Reports, 8, 11446-11455. https://doi.org/10.1016/j.egyr.2022.08.279

Guedmani, M., & Ould Zmirli, M. (2024). Improved Stable Election Protocol with Self-Controlled Mobile Sink for Energy Management in WSNs. Arabian Journal for Science and Engineering, 1-29. https://doi.org/10.1007/s13369-024-09698-9

Guleria, K., Verma, A. K., Goyal, N., Sharma, A. K., Benslimane, A., & Singh, A. (2021). An enhanced energy proficient clustering (EEPC) algorithm for relay selection in heterogeneous WSNs. Ad Hoc Networks, 116, 102473. https://doi.org/10.1016/j.adhoc.2021.102473

Gupta, P., Tripathi, S., & Singh, S. (2021). Energy-efficient routing protocols for cluster-based heterogeneous wireless sensor network (HetWSN)—strategies and challenges: a review. Data Analytics and Management: Proceedings of ICDAM, 853-878. https://doi.org/10.1007/978-981-15-8335-3_65

Jubair, A. M., Hassan, R., Aman, A. H. M., & Sallehudin, H. (2021). Social class particle swarm optimization for variable-length Wireless Sensor Network Deployment. Applied Soft Computing, 113, 107926. https://doi.org/10.1016/j.asoc.2021.107926

Jubair, A. M., Hassan, R., Aman, A. H. M., Sallehudin, H., Al-Mekhlafi, Z. G., Mohammed, B. A., & Alsaffar, M. S. (2021). Optimization of clustering in wireless sensor networks: techniques and protocols. Applied Sciences, 11(23), 11448. https://doi.org/10.3390/app112311448

Jubair, A. M., Mohammed, K. A., & Abd, S. A. (2024, 13-14 Aug. 2024). Constant Cluster-Based Effective Communication for Unmanned Ariel Vehicles-Assisted Vehicular Ad hoc Network. 2024 9th International Conference on Mechatronics Engineering (ICOM), https://doi.org/10.1109/icom61675.2024.10652434

Karunanithy, K., & Velusamy, B. (2020a). Cluster-tree based energy efficient data gathering protocol for industrial automation using WSNs and IoT. Journal of Industrial Information Integration, 19, 100156. https://doi.org/10.1016/j.jii.2020.100156

Karunanithy, K., & Velusamy, B. (2020b). Energy efficient cluster and travelling salesman problem based data collection using WSNs for Intelligent water irrigation and fertigation. Measurement, 161, 107835. https://doi.org/10.1016/j.measurement.2020.107835

Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 6076. https://doi.org/10.3390/s20216076

Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 102317. https://doi.org/10.1016/j.adhoc.2020.102317

Malik, U. M., Javed, M. A., Zeadally, S., & ul Islam, S. (2021). Energy-efficient fog computing for 6G-enabled massive IoT: Recent trends and future opportunities. IEEE Internet of Things Journal, 9(16), 14572-14594. https://doi.org/10.1109/jiot.2021.3068056

Malisetti, N. R., & Pamula, V. K. (2020). Performance of quasi oppositional butterfly optimization algorithm for cluster head selection in WSNs. Procedia Computer Science, 171, 1953-1960. https://doi.org/10.1016/j.procs.2020.04.209

Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University-Science, 32(1), 390-401. https://doi.org/10.1016/j.jksus.2018.04.031

Mengistu, T. M., Kim, T., & Lin, J.-W. (2024). A Survey on Heterogeneity Taxonomy, Security and Privacy Preservation in the Integration of IoT, Wireless Sensor Networks and Federated Learning. Sensors, 24(3), 968. https://doi.org/10.3390/s24030968

Pal, R., Saraswat, M., Kumar, S., Nayyar, A., & Rajput, P. K. (2024). Energy efficient multi-criterion binary grey wolf optimizer based clustering for heterogeneous wireless sensor networks. Soft Computing, 28(4), 3251-3265. https://doi.org/10.1007/s00500-023-09316-0

Pandey, S., Chaudhary, M., & Tóth, Z. (2025). An investigation on real-time insights: enhancing process control with IoT-enabled sensor networks. Discover Internet of Things, 5(1), 29. https://doi.org/10.1007/s43926-025-00124-6

Prakash, V., & Pandey, S. (2023). Metaheuristic algorithm for energy efficient clustering scheme in wireless sensor networks. Microprocessors and Microsystems, 101, 104898. https://doi.org/10.1016/j.micpro.2023.104898

Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132-1144. https://doi.org/10.1016/j.jksuci.2018.08.009

Santhosh, G., & Prasad, K. (2023). Energy optimization routing for hierarchical cluster based WSN using artificial bee colony. Measurement: Sensors, 29, 100848. https://doi.org/10.1016/j.measen.2023.100848

Saoud, B., Shayea, I., Azmi, M. H., & El-Saleh, A. A. (2023). New scheme of WSN routing to ensure data communication between sensor nodes based on energy warning. Alexandria Engineering Journal, 80, 397-407. https://doi.org/10.1016/j.aej.2023.08.058

Shafique, T., Soliman, A.-H., Amjad, A., Uden, L., & Roberts, D. M. (2024). Node Role Selection and Rotation Scheme for Energy Efficiency in Multi-Level IoT-Based Heterogeneous Wireless Sensor Networks (HWSNs). Sensors, 24(17), 5642. https://doi.org/10.3390/s24175642

Sood, T., & Sharma, K. (2022a). LUET: A novel lines-of-uniformity based clustering protocol for heterogeneous-WSN for multiple-applications. Journal of King Saud University-Computer and Information Sciences, 34(7), 4177-4190. https://doi.org/10.1016/j.jksuci.2020.09.016

Sood, T., & Sharma, K. (2022b). A Novelistic GSA and CSA Based Optimization for Energy-Efficient Routing Using Multiple Sinks in HWSNs Under Critical Scenarios. Wireless Personal Communications, 1-37. https://doi.org/10.1007/s11277-021-08087-x

Tushar, W., Saha, T. K., Yuen, C., Smith, D., & Poor, H. V. (2020). Peer-to-peer trading in electricity networks: An overview. IEEE transactions on smart grid, 11(4), 3185-3200. https://doi.org/10.1109/tsg.2020.2969657

Vo, V.-V., Le, D.-T., Raza, S. M., Kim, M., & Choo, H. (2024). Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks. IEEE Internet of Things Journal. https://doi.org/10.1109/jiot.2024.3354730

Wang, A., Shen, J., Vijayakumar, P., Zhu, Y., & Tian, L. (2019). Secure big data communication for energy efficient intra-cluster in WSNs. Information Sciences, 505, 586-599. https://doi.org/10.1016/j.ins.2019.07.085

Xie, J., Zhang, B., & Zhang, C. (2020). A novel relay node placement and energy efficient routing method for heterogeneous wireless sensor networks. IEEE Access, 8, 202439-202444. https://doi.org/10.1109/ACCESS.2020.2984495

Yarinezhad, R., & Hashemi, S. N. (2019). Solving the load balanced clustering and routing problems in WSNs with an fpt-approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58, 101033. https://doi.org/10.1016/j.pmcj.2019.101033

Yue, Y., Cao, L., & Zhang, Y. (2024). Novel WSN Coverage Optimization Strategy Via Monarch Butterfly Algorithm and Particle Swarm Optimization. Wireless Personal Communications, 1-26. https://doi.org/10.1007/s11277-024-11143-x

Downloads

Published

2025-12-29

How to Cite

Jubair, A. M., Thulnoon, A. A. ., & Mubarek, F. S. (2025). Enhanced CSMA/CA Protocol-Based Optimal Robust Dynamic Query-Driven Clustering for Improved QoS in Heterogeneous WSNs. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 59–83. https://doi.org/10.37385/jaets.v7i1.6928