Clustering Analysis of Patchouli Plantations for Sustainable Patchouli Oil Supply Chain Using K-Means Algorithm
DOI:
https://doi.org/10.37385/jaets.v7i1.7188Keywords:
patchouli, clustering, sustainability, supply chain, k-meansAbstract
Growing demand for patchouli oil has undoubtedly become an opportunity for the patchouli industry, particularly in Aceh, which supplies about 80% of Indonesia’s patchouli oil in the global supply chain system. However, the opportunity is often misguided by farmers and even the government, which implements various programs related to patchouli cultivation without identifying the potential land that is suitable to be used for it. The condition indicated that not every land is suitable for patchouli cultivation. Thus, it is necessary to cluster the distribution of existing patchouli plantations. The clustering aims to identify the existing patchouli plantations that have the potential for replication. This study uses the K-Means method that combines variables (the planting land, the harvesting land, and total production) to provide information on the plantation’s potential scale in each region. The clustering measurement pointed out that the plantation in South Aceh Regency has the most potential land for sustainable cultivation, followed by several other areas included in Cluster 2 and Cluster 3. The study’s result is essential in contributing significantly to optimizing patchouli cultivation management sustainability to fulfill Aceh Province’s role as the best quality patchouli oil supplier.
Downloads
References
Adhayani, L., Suhartono, S., & Amalia, A. (2023). Aceh patchouli oil (Pogostemon cablin Benth) as antibacterial and antibiofilm: Mechanism, challenges, and opportunities. AIP Conference Proceedings, 2480(1). https://doi.org/10.1063/5.0103567
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8). https://doi.org/10.3390/electronics9081295
Alguliyev, R. M., Aliguliyev, R. M., & Sukhostat, L. V. (2021). Parallel batch k-means for Big data clustering. Computers & Industrial Engineering, 152, 107023. https://doi.org/10.1016/j.cie.2020.107023
Belhadi, A., Djenouri, Y., Nørvåg, K., Ramampiaro, H., Masseglia, F., & Lin, J. C.-W. (2020). Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities. Engineering Applications of Artificial Intelligence, 95, 103857. https://doi.org/10.1016/j.engappai.2020.103857
Borlea, I.-D., Precup, R.-E., Borlea, A.-B., & Iercan, D. (2021). A unified form of fuzzy C-means and K-means algorithms and its partitional implementation. Knowledge-Based Systems, 214, 106731. https://doi.org/10.1016/j.knosys.2020.106731
Cong, S. (2021). Factors affecting agriculture. Journal of Plant Biology and Agriculture Sciences, 3, 9.
Daud, M., Hikmah, H., Astuti, S., Samrin, S., & Baharuddin, B. (2024). Productivity and Yield of Patchouli (Pogostemon cablin Benth) in Community Forest using Agroforestry Patterns in Tommo District, Mamuju Regency, West Sulawesi Province. IOP Conference Series: Earth and Environmental Science, 1379(1), 012038. https://doi.org/10.1088/1755-1315/1379/1/012038
E. D. Chaves, M., C. A. Picoli, M., & D. Sanches, I. (2020). Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062
Ernawati, E., Masbar, R., Majid, M. S. A., & Jamal, A. (2021). Production and marketing efficiency of patchouli oil industry in Indonesia. Regional Science Inquiry, 13(2), 135–148.
Faisal, M., & Zamzami, E. M. (2020). Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance and manhattan distance. Journal of Physics: Conference Series, 1566(1), 012112. https://doi.org/10.1088/1742-6596/1566/1/012112
Gao, Q., Yang, Z., Dai, P., & Wang, L. (2024). Urban distribution network planning and zoning design based on improved K-means clustering in low carbon background. International Journal of Low-Carbon Technologies, 19, 2258–2265. https://doi.org/10.1093/ijlct/ctae140
Gavioli, A., de Souza, E. G., Bazzi, C. L., Schenatto, K., & Betzek, N. M. (2019). Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. Biosystems Engineering, 181, 86–102. https://doi.org/10.1016/j.biosystemseng.2019.02.019
Henderi, H., Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
Hertina, H., Nurwahid, M., Haswir, H., Sayuti, H., Darwis, A., Rahman, M., Yendra, R., & Hamzah, M. L. (2021). Data mining applied about polygamy using sentiment analysis on Twitters in Indonesian perception. Bulletin of Electrical Engineering and Informatics, 10(4), 2231–2236. https://doi.org/10.11591/eei.v10i4.2325
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
Jain, P. L. B., Patel, S. R., & Desai, M. A. (2022). Patchouli oil: An overview on extraction method, composition and biological activities. Journal of Essential Oil Research, 34(1), 1–11. https://doi.org/10.1080/10412905.2021.1955761
Javadi, S. H., Guerrero, A., & Mouazen, A. M. (2022). Clustering and Smoothing Pipeline for Management Zone Delineation Using Proximal and Remote Sensing. Sensors, 22(2). https://doi.org/10.3390/s22020645
Keumalasari, S., Hamid, A. H., Indra, I., & Nugroho, A. (2025). Risk Management in Sustainable Patchouli Supply Chain. International Journal of Safety & Security Engineering, 15(5). https://doi.org/10.18280/ijsse.150510
Lallo, S., Hasmiranti, A., & Hardianti, B. (2020). Effect of the growth environment on Patchouli (Pogostemon cablin Benth.) oil character at Southeast Sulawesi, Indonesia. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 12(1), 77–81. https://doi.org/10.5958/0975-6892.2020.00011.8
Maizi, H., Yudie Sastra, H., & Arhami. (2020). Mapping Upstream and Downstream Process in The Patchouli Oil Industry Using Supply Chain Operations Reference Model Version 12.0 (SCOR 12.0). IOP Conference Series: Materials Science and Engineering, 931(1), 012008. https://doi.org/10.1088/1757-899X/931/1/012008
Majumder, S., Kayal, P., Chowdhury, I. R., & Das, S. (2023). Regional disparities and development in India: evidence from Wroclow Taxonomy and K-means clustering. GeoJournal, 88(3), 3249–3282. https://doi.org/10.1007/s10708-022-10805-2
Meilizar, M., Hadiguna, R. A., Santosa, S., & Nofialdi, N. (2024). Supply Chain Conceptual Model to Optimize a Local Food Agroindustry from the Coconut Milk Processing. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 519–536. https://doi.org/10.37385/jaets.v6i1.5820
Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R., & Cerdeira-Estrada, S. (2019). Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Computers and Electronics in Agriculture, 167, 105101. https://doi.org/10.1016/j.compag.2019.105101
Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5(2), 181–204. https://doi.org/10.1007/BF01897163
Nisa, K., Sufardi, S., Rusdi, M., & Indra, I. (2024). Soil Quality Index and Patchouli Yields on Various Cropping Systems in Aceh Province, Indonesia: Case Study in Aceh Barat Regency. Case Studies in Chemical and Environmental Engineering, 100798. https://doi.org/10.1016/j.cscee.2024.100798
Nurdin, N. , F. R. M. A. & M. M. (2025). Clustering and Mapping of Agricultural Production Based on Geographic Information System Using K-Medoids Algorithm. Journal of Artificial Intelligence and Technology, 5, 116–124. https://doi.org/10.37965/jait.2025.633
Oyelade, J., Isewon, I., Oladipupo, O., Emebo, O., Omogbadegun, Z., Aromolaran, O., Uwoghiren, E., Olaniyan, D., & Olawole, O. (2019). Data clustering: Algorithms and its applications. 2019 19th International Conference on Computational Science and Its Applications (ICCSA), 71–81. https://doi.org/10.1109/ICCSA.2019.000-1
Paillin, D. B., Machfud, M., Hardjomidjojo, H., & Romli, M. (2024). Agro-Food Supply Chain Risk Assessment: A Review Based on Technique and Approach. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 892–908. https://doi.org/10.37385/jaets.v5i2.3688
Prakhyath, K. M., Yogendra, N. D., Prakash, T. A., Kumar, D., & Anandakumar, T. M. (2024). Resource use efficiency and system productivity of patchouli (Pogostemon cablin (Blanco) Benth) intercropping with food crops. Industrial Crops and Products, 222, 119868. https://doi.org/10.1016/j.indcrop.2024.119868
Reyes, F., Casa, R., Tolomio, M., Dalponte, M., & Mzid, N. (2023). Soil properties zoning of agricultural fields based on a climate-driven spatial clustering of remote sensing time series data. European Journal of Agronomy, 150, 126930. https://doi.org/10.1016/j.eja.2023.126930
Rivera, A. J., Pérez-Godoy, M. D., Elizondo, D., Deka, L., & del Jesus, M. J. (2022). Analysis of clustering methods for crop type mapping using satellite imagery. Neurocomputing, 492, 91–106. https://doi.org/10.1016/j.neucom.2022.04.002
Rodrigues, C., Veloso, M., Alves, A., & Bento, C. L. (2025). Socioeconomic and functional zoning characterization in a city: a clustering approach. Cities, 163, 106023. https://doi.org/10.1016/j.cities.2025.106023
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427%2887%2990125-7
Rusdi, M. (2023). Assessment of Land Characteristics and Recommendation for Improvements in Patchouli Plantations in Aceh Province, Indonesia. Indian Journal of Agricultural Research, 57(4). https://doi.org/10.18805/IJARe.AF-674
Salsabila, M. C. , & Iswahyudi. (2025). Evaluation of Land Suitability for Patchouli Plants in Pantai Tinjau Village, Sekerak District, Aceh Tamiang Regency. Journal Galung Tropika, 14, 131–143. https://doi.org/10.31850/jgt.v14i1.1266
Sentia, P. D., Akbar, C., & Putri, W. A. R. (2022). System Dynamic Modeling: A Case Study of a Hotel Food Supply Chain. Rekayasa Sistem Dan Teknologi Informasi, 4(6), 521–527. https://doi.org/10.29207/resti.v6i4.4077
Setiawan, A. (2021). Land Suitability Assessment for Patchouli (Pogostemon cablin) Development and Essential Oil Production. BIOTROPIA, 28(1). https://doi.org/10.11598/btb.0.0.0.1092
Singh, A., Yadav, A., & Rana, A. (2013). K-means with Three different Distance Metrics. International Journal of Computer Applications, 67(10). https://doi.org/10.5120/11430-6785
Adhayani, L., Suhartono, S., & Amalia, A. (2023). Aceh patchouli oil (Pogostemon cablin Benth) as antibacterial and antibiofilm: Mechanism, challenges, and opportunities. AIP Conference Proceedings, 2480(1). https://doi.org/10.1063/5.0103567
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8). https://doi.org/10.3390/electronics9081295
Alguliyev, R. M., Aliguliyev, R. M., & Sukhostat, L. V. (2021). Parallel batch k-means for Big data clustering. Computers & Industrial Engineering, 152, 107023. https://doi.org/10.1016/j.cie.2020.107023
Belhadi, A., Djenouri, Y., Nørvåg, K., Ramampiaro, H., Masseglia, F., & Lin, J. C.-W. (2020). Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities. Engineering Applications of Artificial Intelligence, 95, 103857. https://doi.org/10.1016/j.engappai.2020.103857
Borlea, I.-D., Precup, R.-E., Borlea, A.-B., & Iercan, D. (2021). A unified form of fuzzy C-means and K-means algorithms and its partitional implementation. Knowledge-Based Systems, 214, 106731. https://doi.org/10.1016/j.knosys.2020.106731
Cong, S. (2021). Factors affecting agriculture. Journal of Plant Biology and Agriculture Sciences, 3, 9.
Daud, M., Hikmah, H., Astuti, S., Samrin, S., & Baharuddin, B. (2024). Productivity and Yield of Patchouli (Pogostemon cablin Benth) in Community Forest using Agroforestry Patterns in Tommo District, Mamuju Regency, West Sulawesi Province. IOP Conference Series: Earth and Environmental Science, 1379(1), 012038. https://doi.org/10.1088/1755-1315/1379/1/012038
E. D. Chaves, M., C. A. Picoli, M., & D. Sanches, I. (2020). Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062
Ernawati, E., Masbar, R., Majid, M. S. A., & Jamal, A. (2021). Production and marketing efficiency of patchouli oil industry in Indonesia. Regional Science Inquiry, 13(2), 135–148.
Faisal, M., & Zamzami, E. M. (2020). Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance and manhattan distance. Journal of Physics: Conference Series, 1566(1), 012112. https://doi.org/10.1088/1742-6596/1566/1/012112
Gao, Q., Yang, Z., Dai, P., & Wang, L. (2024). Urban distribution network planning and zoning design based on improved K-means clustering in low carbon background. International Journal of Low-Carbon Technologies, 19, 2258–2265. https://doi.org/10.1093/ijlct/ctae140
Gavioli, A., de Souza, E. G., Bazzi, C. L., Schenatto, K., & Betzek, N. M. (2019). Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. Biosystems Engineering, 181, 86–102. https://doi.org/10.1016/j.biosystemseng.2019.02.019
Henderi, H., Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
Hertina, H., Nurwahid, M., Haswir, H., Sayuti, H., Darwis, A., Rahman, M., Yendra, R., & Hamzah, M. L. (2021). Data mining applied about polygamy using sentiment analysis on Twitters in Indonesian perception. Bulletin of Electrical Engineering and Informatics, 10(4), 2231–2236. https://doi.org/10.11591/eei.v10i4.2325
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
Jain, P. L. B., Patel, S. R., & Desai, M. A. (2022). Patchouli oil: An overview on extraction method, composition and biological activities. Journal of Essential Oil Research, 34(1), 1–11. https://doi.org/10.1080/10412905.2021.1955761
Javadi, S. H., Guerrero, A., & Mouazen, A. M. (2022). Clustering and Smoothing Pipeline for Management Zone Delineation Using Proximal and Remote Sensing. Sensors, 22(2). https://doi.org/10.3390/s22020645
Keumalasari, S., Hamid, A. H., Indra, I., & Nugroho, A. (2025). Risk Management in Sustainable Patchouli Supply Chain. International Journal of Safety & Security Engineering, 15(5). https://doi.org/10.18280/ijsse.150510
Lallo, S., Hasmiranti, A., & Hardianti, B. (2020). Effect of the growth environment on Patchouli (Pogostemon cablin Benth.) oil character at Southeast Sulawesi, Indonesia. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 12(1), 77–81. https://doi.org/10.5958/0975-6892.2020.00011.8
Maizi, H., Yudie Sastra, H., & Arhami. (2020). Mapping Upstream and Downstream Process in The Patchouli Oil Industry Using Supply Chain Operations Reference Model Version 12.0 (SCOR 12.0). IOP Conference Series: Materials Science and Engineering, 931(1), 012008. https://doi.org/10.1088/1757-899X/931/1/012008
Majumder, S., Kayal, P., Chowdhury, I. R., & Das, S. (2023). Regional disparities and development in India: evidence from Wroclow Taxonomy and K-means clustering. GeoJournal, 88(3), 3249–3282. https://doi.org/10.1007/s10708-022-10805-2
Meilizar, M., Hadiguna, R. A., Santosa, S., & Nofialdi, N. (2024). Supply Chain Conceptual Model to Optimize a Local Food Agroindustry from the Coconut Milk Processing. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 519–536. https://doi.org/10.37385/jaets.v6i1.5820
Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R., & Cerdeira-Estrada, S. (2019). Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Computers and Electronics in Agriculture, 167, 105101. https://doi.org/10.1016/j.compag.2019.105101
Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5(2), 181–204. https://doi.org/10.1007/BF01897163
Nisa, K., Sufardi, S., Rusdi, M., & Indra, I. (2024). Soil Quality Index and Patchouli Yields on Various Cropping Systems in Aceh Province, Indonesia: Case Study in Aceh Barat Regency. Case Studies in Chemical and Environmental Engineering, 100798. https://doi.org/10.1016/j.cscee.2024.100798
Nurdin, N. , F. R. M. A. & M. M. (2025). Clustering and Mapping of Agricultural Production Based on Geographic Information System Using K-Medoids Algorithm. Journal of Artificial Intelligence and Technology, 5, 116–124. https://doi.org/10.37965/jait.2025.633
Oyelade, J., Isewon, I., Oladipupo, O., Emebo, O., Omogbadegun, Z., Aromolaran, O., Uwoghiren, E., Olaniyan, D., & Olawole, O. (2019). Data clustering: Algorithms and its applications. 2019 19th International Conference on Computational Science and Its Applications (ICCSA), 71–81. https://doi.org/10.1109/ICCSA.2019.000-1
Paillin, D. B., Machfud, M., Hardjomidjojo, H., & Romli, M. (2024). Agro-Food Supply Chain Risk Assessment: A Review Based on Technique and Approach. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 892–908. https://doi.org/10.37385/jaets.v5i2.3688
Prakhyath, K. M., Yogendra, N. D., Prakash, T. A., Kumar, D., & Anandakumar, T. M. (2024). Resource use efficiency and system productivity of patchouli (Pogostemon cablin (Blanco) Benth) intercropping with food crops. Industrial Crops and Products, 222, 119868. https://doi.org/10.1016/j.indcrop.2024.119868
Reyes, F., Casa, R., Tolomio, M., Dalponte, M., & Mzid, N. (2023). Soil properties zoning of agricultural fields based on a climate-driven spatial clustering of remote sensing time series data. European Journal of Agronomy, 150, 126930. https://doi.org/10.1016/j.eja.2023.126930
Rivera, A. J., Pérez-Godoy, M. D., Elizondo, D., Deka, L., & del Jesus, M. J. (2022). Analysis of clustering methods for crop type mapping using satellite imagery. Neurocomputing, 492, 91–106. https://doi.org/10.1016/j.neucom.2022.04.002
Rodrigues, C., Veloso, M., Alves, A., & Bento, C. L. (2025). Socioeconomic and functional zoning characterization in a city: a clustering approach. Cities, 163, 106023. https://doi.org/10.1016/j.cities.2025.106023
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427%2887%2990125-7
Rusdi, M. (2023). Assessment of Land Characteristics and Recommendation for Improvements in Patchouli Plantations in Aceh Province, Indonesia. Indian Journal of Agricultural Research, 57(4). https://doi.org/10.18805/IJARe.AF-674
Salsabila, M. C. , & Iswahyudi. (2025). Evaluation of Land Suitability for Patchouli Plants in Pantai Tinjau Village, Sekerak District, Aceh Tamiang Regency. Journal Galung Tropika, 14, 131–143. https://doi.org/10.31850/jgt.v14i1.1266
Sentia, P. D., Akbar, C., & Putri, W. A. R. (2022). System Dynamic Modeling: A Case Study of a Hotel Food Supply Chain. Rekayasa Sistem Dan Teknologi Informasi, 4(6), 521–527. https://doi.org/10.29207/resti.v6i4.4077
Setiawan, A. (2021). Land Suitability Assessment for Patchouli (Pogostemon cablin) Development and Essential Oil Production. BIOTROPIA, 28(1). https://doi.org/10.11598/btb.0.0.0.1092
Singh, A., Yadav, A., & Rana, A. (2013). K-means with Three different Distance Metrics. International Journal of Computer Applications, 67(10). https://doi.org/10.5120/11430-6785
Sperandio, H. V., de Morais, M. S., de Jesus França, L. C., Mucida, D. P., Santana, R. C., da Silva, R. S., Rodrigues, C. R., de Faria, B. L., de Azevedo, M. L., & Gorgens, E. B. (2025). Land suitability modeling integrating geospatial data and artificial intelligence. Agricultural Systems, 223, 104197. https://doi.org/10.1016/j.agsy.2024.104197
Swain, K. P., Nayak, S. R., Ravi, V., Mishra, S., Alahmadi, T. J., Singh, P., & Diwakar, M. (2024). Empowering Crop Selection with Ensemble Learning and K-means Clustering: A Modern Agricultural Perspective. The Open Agriculture Journal, 18(1). https://doi.org/10.2174/0118743315291367240207093403
Swamy, M. K., & Sinniah, U. R. (2016). Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Industrial Crops and Products, 87, 161–176. https://doi.org/10.1016/j.indcrop.2016.04.032
Vital, R. G., Melo, P. G. S., Silva, J. N., Rodovalho, M. L., Lima, N. M., Dos Santos, G. F., Vaz, B. G., da Silva Lima, G., & dos Reis Nascimento, A. (2024). Agronomic Performance, Oil Yield and Hydrolate Quality of Patchouli Cultivated in Different Soil Covers. Journal of Oleo Science, 73(10), 1339–1347. https://doi.org/10.5650/jos.ess24051
Wahyudi, T., & Silfia, T. (2022). Implementation of Data Mining Using K-Means Clustering Method to Determine Sales Strategy In S&R Baby Store. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 93–103. https://doi.org/10.37385/jaets.v4i1.913
Wang, X.-D., Chen, R.-C., Yan, F., Zeng, Z.-Q., & Hong, C.-Q. (2019). Fast Adaptive K-Means Subspace Clustering for High-Dimensional Data. IEEE Access, 7, 42639–42651. https://doi.org/10.1109/ACCESS.2019.2907043
Wang, Y., Yuan, Y., Yuan, F., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2025). Optimizing management zone delineation through advanced dimensionality reduction models and clustering algorithms. Precision Agriculture, 26(4), 68. https://doi.org/10.1007/s11119-025-10265-x
Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLOS ONE, 19(12), e0310839-. https://doi.org/10.1371/journal.pone.0310839
Yuan, Y., Shi, B., Yost, R., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2022). Optimization of Management Zone Delineation for Precision Crop Management in an Intensive Farming System. Plants, 11(19). https://doi.org/10.3390/plants11192611
Yusnidar, Y., Susanti, I., Jamilah, J., Effendy, E., & Romano, R. (2021). Fluctuation of Patchouli Oil Price and Its Effect On Patchouli Aceh Production and Productivity. International Journal of Engineering, Science and Information Technology, 1(4), 90–94. https://doi.org/10.52088/ijesty.v1i4.179
Zeng, J., Li, C., Liu, J., Li, Y., Hu, Z., He, M., Zhang, H., & Yan, H. (2021). Ecological assessment of current and future Pogostemon cablin Benth. potential planting regions in China based on MaxEnt and ArcGIS models. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100308. https://doi.org/10.1016/j.jarmap.2021.100308
Zhang, J., Zhou, X., Liu, X., Wang, X., He, G., & Zhang, Y. (2025). Harmonizing Landsat-8 OLI and Sentinel-2 MSI: an assessment of surface reflectance and vegetation index consistency. International Journal of Digital Earth, 18(1), 2484667. https://doi.org/10.1080/17538947.2025.2484667
Zikri, I., Kamaruzzaman, S., & Susanti, E. (2021). Study on sustainable agriculture and dimension of needs: a case study patchouli farming in Aceh Jaya. IOP Conference Series: Earth and Environmental Science, 667(1), 012038. https://doi.org/10.1088/1755-1315/667/1/012038
Zuhri, S., Sentia, P. D., Lubis, N. A., & Permai, S. D. (2019). Analysis of port fare increases on container yard services using logistic regression model. IOP Conference Series: Materials Science and Engineering, 697(1), 012003. https://doi.org/10.1088/1757-899X/697/1/012003
Zulfadli, Z., Wasistha, N. I., Oktarina, H., Khairan, K., & Sriwati, R. (2023). Pathogens causing wilt diseases in patchouli plant (Pogostemon cablin Benth.): A review on symptoms, bioecology, and management. IOP Conference Series: Earth and Environmental Science, 1183(1), 012027. https://doi.org/10.1088/1755-1315/1183/1/012027


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




