Optimization of Convolutional Neural Network for Classification of Hydroponic Vegetable Cultivation Using Machine Learning

Authors

  • Arif Ridho Lubis Politeknik Negeri Medan
  • Santi Prayudani Politeknik Negeri Medan
  • Purwa Hasan Putra Politeknik Negeri Medan
  • Yuyun Yusnida Lase Politeknik Negeri Medan

DOI:

https://doi.org/10.37385/jaets.v7i1.7231

Keywords:

Optimization, Convolutional Neural Network, Classification, Hydroponic Vegetables, Machine Learning

Abstract

In an effort to apply applied product innovation and support the improvement of hydroponic vegetable cultivation, it is based on several things. Among them are changes in the texture of the year, stems and vegetable quality. At this time the problems faced by hydroponic vegetable pickers, especially banyumas village youth organizations who have UMKM hydroponic vegetable cultivation. This situation will have an impact on problems and losses that result in a lack of yield and quality of harvested vegetables if not resolved quickly. The results of this study resulted in optimal accuracy performance in the classification of hydroponic vegetables with CNN, this study also successfully classified normal vegetables with vegetables affected by disease. This research produces accuracy in the first test 73% and the second test 92%.

Downloads

Download data is not yet available.

References

Alam, T., Haq, Z.-U.-, Ahmed, M. A., & Ikram, M. (2024). Hydroponics as an advanced vegetable production technique: an overview. Zoo Botanica, 1(1), 29–42. https://doi.org/10.55627/zoobotanica.001.01.0630

Alfred, R., Obit, J. H., Chin, C. P.-Y., Haviluddin, H., & Lim, Y. (2021). Towards Paddy Rice Smart Farming: A Review on Big Data, Machine Learning, and Rice Production Tasks. IEEE Access, 9, 50358–50380. https://doi.org/10.1109/ACCESS.2021.3069449

Ali, A. H., Mohammed, M. A., Hasan, R. A., Abbod, M. N., Ahmed, M. S., & Sutikno, T. (2023). Big data classification based on improved parallel k-nearest neighbor. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(1), 235. https://doi.org/10.12928/telkomnika.v21i1.24290

Ambavane, P., Zaware, S. N., & Chavan, M. (2024). A Comprehensive Literature Review on Emerging Potentials of Machine Learning Algorithms on Geospatial Platform for Medicinal Plant Cultivation Management in Existing Scenario. In N. Sharma, A. C. Goje, A. Chakrabarti, & A. M. Bruckstein (Eds.), Data Management, Analytics and Innovation (Vol. 997, pp. 1–15). Springer Nature Singapore.

Ang, K. L.-M., & Seng, J. K. P. (2021). Big Data and Machine Learning With Hyperspectral Information in Agriculture. IEEE Access, 9, 36699–36718. https://doi.org/10.1109/ACCESS.2021.3051196

Chen, S., Yao, C., Zhou, J., Ma, H., Jin, J., Song, W., & Kai, Z. (2024). Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation. Foods, 13(8). https://doi.org/10.3390/foods13081151

Elinur, Heriyanto, Vaulina, S., Purwati, & Fahrial. (2024). Characteristics and Determinants of Household Food Consumption of Female Vegetable Farmers in Pekanbaru City, Riau Province, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 14(2), 699–705. https://doi.org/10.18517/ijaseit.14.2.19139

Fitriani, Zainuddin, Z., & Syafaruddin. (2022). Nutrition Control System In Nutrient Film Technique (NFT) Hydroponics With Convolutional Neural Network (CNN) Method. 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE), 41–46. https://doi.org/10.1109/ISMODE56940.2022.10180412

Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access, 10, 19572–19585. https://doi.org/10.1109/ACCESS.2022.3151248

Impor Sayuran Menurut Negara Asal Utama, 2018-2023. (2019). In Badan Pusat Statistik Indonesia.

Lanyak, A. C. F., Prasetiadi, A., Widodo, H. B., Ghani, M. H., & Athallah, A. (2024). Dental caries detection using faster region-based convolutional neural network with residual network. IAES International Journal of Artificial Intelligence, 13(2), 2025–2033. https://doi.org/10.11591/ijai.v13.i2.pp2027-2035

Lubis, A. R., Prayudani, S., Hamzah, M. L., Lase, Y. Y., Lubis, M., Al-Khowarizmi, & Hutagalung, G. A. (2024). Deep neural networks approach with transfer learning to detect fake accounts social media on Twitter. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 269–277. https://doi.org/10.11591/ijeecs.v33.i1.pp269-277

Lumbantoruan, R., Rajagukguk, N., Lubis, A. U., Claudia, M., & Simanjuntak, H. (2025). Two-step convolutional neural network classification of plant disease. IAES International Journal of Artificial Intelligence, 14(1), 584–591. https://doi.org/10.11591/ijai.v14.i1.pp584-591

Mjahad, A., Saban, M., Azarmdel, H., & Rosado-Muñoz, A. (2023). Efficient Extraction of Deep Image Features Using a Convolutional Neural Network (CNN) for Detecting Ventricular Fibrillation and Tachycardia. Journal of Imaging, 9(9), 190. https://doi.org/10.3390/jimaging9090190

Mudgil, R., Garg, N., Singh, P., & Madhu, C. (2022). Identification of Tomato Plant Diseases Using CNN- A Comparative Review. 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), 174–181. https://doi.org/10.1109/AIC55036.2022.9848931

Prasetyo, Y. B., Sunaringsih, S., & Farera, F. A. (2024). Determinant factors affecting adolescent fruit and vegetable consumption in Indonesia. Ankara Medical Journal, 24(1), 14–27. https://doi.org/10.5505/amj.2024.82609

Priya, G. L., Baskar, C., Deshmane, S. S., Adithya, C., & Das, S. (2023). Revolutionizing Holy-Basil Cultivation With AI-Enabled Hydroponics System. IEEE Access, 11, 82624–82639. https://doi.org/10.1109/ACCESS.2023.3300912

Qisthi, I. B., & Siswono, H. (2024). Classification of nutmeg ripeness using artificial intelligence. IAES International Journal of Artificial Intelligence, 13(2), 2441–2450. https://doi.org/10.11591/ijai.v13.i2.pp2441-2450

Qu, Q., Ma, Z., Clausen, A., & Jorgensen, B. N. (2021). A Comprehensive Review of Machine Learning in Multi-objective Optimization. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), 7–14. https://doi.org/10.1109/BDAI52447.2021.9515233

Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction. IEEE Access, 9, 63406–63439. https://doi.org/10.1109/ACCESS.2021.3075159

Ravi, C., & Matt, S. G. (2024). A novel pairwise based convolutional neural network for image preprocessing enhancement. IAES International Journal of Artificial Intelligence, 13(4), 4095–4105. https://doi.org/10.11591/ijai.v13.i4.pp4095-4105

Sangeetha, T., & Periyathambi, E. (2024). Automatic nutrient estimator: distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Computer Science, 10, e1871. https://doi.org/10.7717/peerj-cs.1871

Sulaiman, R., Azeman, N. H., Mokhtar, M. H. H., Mobarak, N. N., Abu Bakar, M. H., & Bakar, A. A. A. (2024). Hybrid ensemble-based machine learning model for predicting phosphorus concentrations in hydroponic solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304, 123327. https://doi.org/10.1016/j.saa.2023.123327

Syarief, M., & Setiawan, W. (2020). Convolutional neural network for maize leaf disease image classification. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1376–1381. https://doi.org/10.12928/TELKOMNIKA.v18i3.14840

Takeuchi, Y. (2019). 3D Printable Hydroponics: A Digital Fabrication Pipeline for Soilless Plant Cultivation. IEEE Access, 7, 35863–35873. https://doi.org/10.1109/ACCESS.2019.2905233

Vuong, P. H., Phu, L. H., Duy, L. N., Bao, P. T., & Trinh, T. D. (2024). An improved convolutional recurrent neural network for stock price forecasting. IAES International Journal of Artificial Intelligence, 13(3), 3381–3394. https://doi.org/10.11591/ijai.v13.i3.pp3381-3394

Waluyo, Widura, A., Hadiatna, F., & Anugerah, D. (2023). Fuzzy-Based Smart Farming and Consumed Energy Comparison Using the Internet of Things. IEEE Access, 11, 69241–69251. https://doi.org/10.1109/ACCESS.2023.3291616

Wongpatikaseree, K., Hnoohom, N., & Yuenyong, S. (2018). Machine Learning Methods for Assessing Freshness in Hydroponic Produce. 2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (ISAI-NLP), 1–4. https://doi.org/10.1109/iSAI-NLP.2018.8692883

Downloads

Published

2025-12-29

How to Cite

Lubis, A. R., Prayudani, S., Putra, P. H. ., & Lase, Y. Y. (2025). Optimization of Convolutional Neural Network for Classification of Hydroponic Vegetable Cultivation Using Machine Learning. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 119–128. https://doi.org/10.37385/jaets.v7i1.7231