Optimization of Convolutional Neural Network for Classification of Hydroponic Vegetable Cultivation Using Machine Learning
DOI:
https://doi.org/10.37385/jaets.v7i1.7231Keywords:
Optimization, Convolutional Neural Network, Classification, Hydroponic Vegetables, Machine LearningAbstract
In an effort to apply applied product innovation and support the improvement of hydroponic vegetable cultivation, it is based on several things. Among them are changes in the texture of the year, stems and vegetable quality. At this time the problems faced by hydroponic vegetable pickers, especially banyumas village youth organizations who have UMKM hydroponic vegetable cultivation. This situation will have an impact on problems and losses that result in a lack of yield and quality of harvested vegetables if not resolved quickly. The results of this study resulted in optimal accuracy performance in the classification of hydroponic vegetables with CNN, this study also successfully classified normal vegetables with vegetables affected by disease. This research produces accuracy in the first test 73% and the second test 92%.
Downloads
References
Alam, T., Haq, Z.-U.-, Ahmed, M. A., & Ikram, M. (2024). Hydroponics as an advanced vegetable production technique: an overview. Zoo Botanica, 1(1), 29–42. https://doi.org/10.55627/zoobotanica.001.01.0630
Alfred, R., Obit, J. H., Chin, C. P.-Y., Haviluddin, H., & Lim, Y. (2021). Towards Paddy Rice Smart Farming: A Review on Big Data, Machine Learning, and Rice Production Tasks. IEEE Access, 9, 50358–50380. https://doi.org/10.1109/ACCESS.2021.3069449
Ali, A. H., Mohammed, M. A., Hasan, R. A., Abbod, M. N., Ahmed, M. S., & Sutikno, T. (2023). Big data classification based on improved parallel k-nearest neighbor. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(1), 235. https://doi.org/10.12928/telkomnika.v21i1.24290
Ambavane, P., Zaware, S. N., & Chavan, M. (2024). A Comprehensive Literature Review on Emerging Potentials of Machine Learning Algorithms on Geospatial Platform for Medicinal Plant Cultivation Management in Existing Scenario. In N. Sharma, A. C. Goje, A. Chakrabarti, & A. M. Bruckstein (Eds.), Data Management, Analytics and Innovation (Vol. 997, pp. 1–15). Springer Nature Singapore.
Ang, K. L.-M., & Seng, J. K. P. (2021). Big Data and Machine Learning With Hyperspectral Information in Agriculture. IEEE Access, 9, 36699–36718. https://doi.org/10.1109/ACCESS.2021.3051196
Chen, S., Yao, C., Zhou, J., Ma, H., Jin, J., Song, W., & Kai, Z. (2024). Occurrence and Risk Assessment of Pesticides, Phthalates, and Heavy Metal Residues in Vegetables from Hydroponic and Conventional Cultivation. Foods, 13(8). https://doi.org/10.3390/foods13081151
Elinur, Heriyanto, Vaulina, S., Purwati, & Fahrial. (2024). Characteristics and Determinants of Household Food Consumption of Female Vegetable Farmers in Pekanbaru City, Riau Province, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 14(2), 699–705. https://doi.org/10.18517/ijaseit.14.2.19139
Fitriani, Zainuddin, Z., & Syafaruddin. (2022). Nutrition Control System In Nutrient Film Technique (NFT) Hydroponics With Convolutional Neural Network (CNN) Method. 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE), 41–46. https://doi.org/10.1109/ISMODE56940.2022.10180412
Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access, 10, 19572–19585. https://doi.org/10.1109/ACCESS.2022.3151248
Impor Sayuran Menurut Negara Asal Utama, 2018-2023. (2019). In Badan Pusat Statistik Indonesia.
Lanyak, A. C. F., Prasetiadi, A., Widodo, H. B., Ghani, M. H., & Athallah, A. (2024). Dental caries detection using faster region-based convolutional neural network with residual network. IAES International Journal of Artificial Intelligence, 13(2), 2025–2033. https://doi.org/10.11591/ijai.v13.i2.pp2027-2035
Lubis, A. R., Prayudani, S., Hamzah, M. L., Lase, Y. Y., Lubis, M., Al-Khowarizmi, & Hutagalung, G. A. (2024). Deep neural networks approach with transfer learning to detect fake accounts social media on Twitter. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 269–277. https://doi.org/10.11591/ijeecs.v33.i1.pp269-277
Lumbantoruan, R., Rajagukguk, N., Lubis, A. U., Claudia, M., & Simanjuntak, H. (2025). Two-step convolutional neural network classification of plant disease. IAES International Journal of Artificial Intelligence, 14(1), 584–591. https://doi.org/10.11591/ijai.v14.i1.pp584-591
Mjahad, A., Saban, M., Azarmdel, H., & Rosado-Muñoz, A. (2023). Efficient Extraction of Deep Image Features Using a Convolutional Neural Network (CNN) for Detecting Ventricular Fibrillation and Tachycardia. Journal of Imaging, 9(9), 190. https://doi.org/10.3390/jimaging9090190
Mudgil, R., Garg, N., Singh, P., & Madhu, C. (2022). Identification of Tomato Plant Diseases Using CNN- A Comparative Review. 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), 174–181. https://doi.org/10.1109/AIC55036.2022.9848931
Prasetyo, Y. B., Sunaringsih, S., & Farera, F. A. (2024). Determinant factors affecting adolescent fruit and vegetable consumption in Indonesia. Ankara Medical Journal, 24(1), 14–27. https://doi.org/10.5505/amj.2024.82609
Priya, G. L., Baskar, C., Deshmane, S. S., Adithya, C., & Das, S. (2023). Revolutionizing Holy-Basil Cultivation With AI-Enabled Hydroponics System. IEEE Access, 11, 82624–82639. https://doi.org/10.1109/ACCESS.2023.3300912
Qisthi, I. B., & Siswono, H. (2024). Classification of nutmeg ripeness using artificial intelligence. IAES International Journal of Artificial Intelligence, 13(2), 2441–2450. https://doi.org/10.11591/ijai.v13.i2.pp2441-2450
Qu, Q., Ma, Z., Clausen, A., & Jorgensen, B. N. (2021). A Comprehensive Review of Machine Learning in Multi-objective Optimization. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), 7–14. https://doi.org/10.1109/BDAI52447.2021.9515233
Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction. IEEE Access, 9, 63406–63439. https://doi.org/10.1109/ACCESS.2021.3075159
Ravi, C., & Matt, S. G. (2024). A novel pairwise based convolutional neural network for image preprocessing enhancement. IAES International Journal of Artificial Intelligence, 13(4), 4095–4105. https://doi.org/10.11591/ijai.v13.i4.pp4095-4105
Sangeetha, T., & Periyathambi, E. (2024). Automatic nutrient estimator: distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Computer Science, 10, e1871. https://doi.org/10.7717/peerj-cs.1871
Sulaiman, R., Azeman, N. H., Mokhtar, M. H. H., Mobarak, N. N., Abu Bakar, M. H., & Bakar, A. A. A. (2024). Hybrid ensemble-based machine learning model for predicting phosphorus concentrations in hydroponic solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304, 123327. https://doi.org/10.1016/j.saa.2023.123327
Syarief, M., & Setiawan, W. (2020). Convolutional neural network for maize leaf disease image classification. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1376–1381. https://doi.org/10.12928/TELKOMNIKA.v18i3.14840
Takeuchi, Y. (2019). 3D Printable Hydroponics: A Digital Fabrication Pipeline for Soilless Plant Cultivation. IEEE Access, 7, 35863–35873. https://doi.org/10.1109/ACCESS.2019.2905233
Vuong, P. H., Phu, L. H., Duy, L. N., Bao, P. T., & Trinh, T. D. (2024). An improved convolutional recurrent neural network for stock price forecasting. IAES International Journal of Artificial Intelligence, 13(3), 3381–3394. https://doi.org/10.11591/ijai.v13.i3.pp3381-3394
Waluyo, Widura, A., Hadiatna, F., & Anugerah, D. (2023). Fuzzy-Based Smart Farming and Consumed Energy Comparison Using the Internet of Things. IEEE Access, 11, 69241–69251. https://doi.org/10.1109/ACCESS.2023.3291616
Wongpatikaseree, K., Hnoohom, N., & Yuenyong, S. (2018). Machine Learning Methods for Assessing Freshness in Hydroponic Produce. 2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (ISAI-NLP), 1–4. https://doi.org/10.1109/iSAI-NLP.2018.8692883


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




