Impact of SWCC Measurement Methods on the Numerical Investigations of Unsaturated Soils

Authors

DOI:

https://doi.org/10.37385/jaets.v7i1.7287

Keywords:

soil-water characteristic curve, Unsaturated soils, Infiltration, Landslide, FLAC 2D

Abstract

The soil-water characteristic curve SWCC, also known as the soil-water retention curve SWRC, describes the relationship between soil suction and water content in unsaturated soils. Many studies rely on specific laboratory testing methods without considering their impact on numerical simulations. This research investigates the effect of different SWCC measurement techniques on numerical modeling outcomes. Soil samples from the Tebessa region were tested using three methods: the filter paper method, the osmotic technique, and the axis translation technique. Numerical simulations were then conducted using FLAC software to analyze the influence of these methods on the hydromechanical properties of unsaturated soils and slope stability under two days of wetting conditions. The results indicate that the selected SWCC measurement method significantly affects the predicted vertical suction profile and influence the factor of safety (FOS) in slope stability analysis. This suggests that while accurate suction measurements are crucial for understanding soil behavior, their overall impact on slope stability predictions varies depending on the testing technique employed.

Downloads

Download data is not yet available.

Author Biographies

Abderrahim Mihoubi, Civil Engineering Department, Mining Laboratory, Echahid Cheikh Larbi Tebessi university

PhD student in Civil Engineering

Samir Benmoussa, UNIVERSITY OF BATNA 2, CIVIL ENGINEERING DEPARTMENT, LGC-ROI.

Professor in civil engineering at the civil engineering department

Abdelkader Houam, University of Tebessa, Civil Engineering Department, Mining Laboratory

Professor in civil engineering, civil engineering department.

References

Alnmr, A., Alzawi, M. O., Ray, R., Abdullah, S., & Ibraheem, J. (2024). Experimental investigation of the soil-water characteristic curves (SWCC) of expansive soil: Effects of sand content, initial saturation, and initial dry unit weight. Water, 16(5), 627. https://doi.org/10.3390/w16050627

Amarasinghe, M. P., Robert, D., Kulathilaka, S. A. S., Zhou, A., & Jayathissa, H. A. G. (2024). Slope stability analysis of unsaturated colluvial slopes based on case studies of rainfall-induced landslides. Bulletin of Engineering Geology and the Environment, 83, 476. https://doi.org/10.1007/s10064-024-03933-1

Angelaki, A., Bota, V., & Chalkidis, I. (2023). Estimation of hydraulic parameters from the soil water characteristic curve. Sustainability, 15(8), 6714. https://doi.org/10.3390/su15086714

ASTM. (2003). D5298-03: Standard test method for measurement of soil potential (suction) using filter paper.

Batali, L., & Andreea, C. (2016). Slope stability analysis using the unsaturated stress analysis: Case study. Procedia Engineering, 143, 284–291. https://doi.org/10.1016/j.proeng.2016.06.036

Bello, N., Satyanaga, A., Irawan, S., Zhai, Q., Gofar, N., & Kim, J. (2025). An innovative modelling technique for bimodal soil water characteristic curve under wetting process. Scientific Reports, 15(1), 11837. https://doi.org/10.1038/s41598-025-93987-2

Bicalho, K. V., Gomes Correia, A., Ferreira, S., Fleureau, S. M., & Marinho, F. A. M. (2007). Filter paper method of soil suction measurement. XIII Panamerican Conference on Soil Mechanics and Geotechnical Engineering.

Blatz, J. A., Cui, Y. J., & Oldecop, L. (2008). Vapour equilibrium and osmotic technique for suction control. Geotechnical and Geological Engineering, 26, 661–673. https://doi.org/10.1007/s10706-008-9196-1

Cai, F., & Ugai, K. (2004). Numerical analysis of rainfall effects on slope stability. International Journal of Geomechanics, 4, 69–78. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(69)

Carvalho, J. C. D., & Gitirana Jr., G. D. F. (2021). Unsaturated soils in the context of tropical soils. Soils and Rocks, 44, e2021068121. https://doi.org/10.28927/SR.2021.068121

Cao, W., Wan, Z., & Li, W. (2023). Stability of unsaturated soil slope considering stratigraphic uncertainty. Sustainability, 15(13), 10717. https://doi.org/10.3390/su151310717

Chen, H.-E., Tsai, T.-L., & Yang, J.-C. (2017). Threshold of slope instability induced by rainfall and lateral flow. Water, 9(9), 722. https://doi.org/10.3390/w9090722

Cho, S. E. (2016). Stability analysis of unsaturated soil slopes considering water-air flow caused by rainfall infiltration. Engineering Geology, 211, 184–197. https://doi.org/10.1016/j.enggeo.2016.07.008

Costa, K. R. C. B., Dantas, A. P. N., Cavalcante, A. L. B., & Assis, A. P. (2023). Probabilistic approach to transient unsaturated slope stability associated with precipitation event. Sustainability, 15(21), 15260. https://doi.org/10.3390/su152115260

Delage, P., Howat, M. D., & Cui, Y. J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Engineering Geology, 50(1–2), 31–48. https://doi.org/10.1016/S0013-7952(97)00083-5

Espinosa F., S. A., & El Naggar, M. H. (2024). Parametric study of rainfall-induced instability in fine-grained sandy soil. Geotechnics, 4(4), 1159–1174. https://doi.org/10.3390/geotechnics4040059

Fredlund, D. G., Morgenstern, N., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15, 313–321. https://doi.org/10.1139/t78-029

Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061

Fredlund, D. G., Barbour, S. L., Fredlund, M. D., & Xing, A. (1996). The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal, 33, 440–448. https://doi.org/10.1139/t96-065

Fredlund, D. G. (2017). Role of the soil-water characteristic curve in unsaturated soil mechanics. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, 17–22.

Gardner, R. (1937). A method of measuring the capillary tension of soil moisture. Soil Science, 43, 277–293. https://doi.org/10.1097/00010694-193704000-00004

Goh, S. G., Leong, E. C., & Rahardjo, H. (2010). Shear strength equations for unsaturated soil under drying and wetting. Journal of Geotechnical and Geo-environmental Engineering, 136, 594–606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261

Hayek, M. (2024). Analytical solution for steady vertical flux through unsaturated soils based on van Genuchten-Mualem model. Journal of Hydrology, 634, 131066. https://doi.org/10.1016/j.jhydrol.2024.131066

Houston, W. N., Dye, H. B., Zapata, C. E., Perera, Y. Y., & Harraz, A. (2006). Determination of SWCC using one point suction measurement and standard curves. Unsaturated Soils 2006, 1482–1493. https://doi.org/10.1061/40802(189)123

Hosseini, S., Astaraki, F., Imam, S. M. R., Chalabii, J., & Movahedi Rad, M. (2024). Investigation of shear strength reduction in reinforced slopes. Buildings, 14(2), 432. https://doi.org/10.3390/buildings14020432

Hu, R., Hong, J.-M., Chen, Y.-F., & Zhou, C.-B. (2018). Hydraulic hysteresis effects on coupled flow–deformation processes. Applied Mathematical Modelling, 54, 221–245. https://doi.org/10.1016/j.apm.2017.09.023

Itasca Consulting Group. (2019). FLAC 8.1 Manual: Fluid–Mechanical Interaction.

Kang, S., Lee, S.-R., & Cho, S.-E. (2020). Slope stability analysis... Sustainability, 12(7), 2839. https://doi.org/10.3390/su12072839

Kang, S., & Kim, B. (2022). Effects of coupled hydro-mechanical model... Natural Hazards, 111, 1741–1769. https://doi.org/10.1007/s11069-021-05114-9

Lenhard, R. J., & Parker, J. C. (1987). A model for hysteretic constitutive relations. Water Resources Research, 23(12), 2197–2206. https://doi.org/10.1029/WR023i012p02187

Li, X., Hu, C., Li, F., & Gao, H. (2020). Determining soil-water characteristic curve of lime-treated loess. Scientific Reports, 10(1), 21569. https://doi.org/10.1038/s41598-020-78489-7

Liu, Q. Q., & Li, J. C. (2015). Effects of water seepage on slope stability. Procedia IUTAM, 17, 29–39. https://doi.org/10.1016/j.piutam.2015.06.006

Liu, Q., Guo, L., Miao, J., Guo, S., & Shu, J. (2024). Predicting SWCC of compacted quartz sand. Scientific Reports, 14(1), 22564. https://doi.org/10.1038/s41598-024-73821-x

Liu, S. Y., Shao, L. T., & Li, H. J. (2015). Slope stability: LEM vs FEM. Computers and Geotechnics, 63, 291–298. https://doi.org/10.1016/j.compgeo.2014.10.008

Mburu, J. W., Li, A.-J., Lin, H.-D., & Lu, C.-W. (2022). Unsaturated slopes under rainfall infiltration. Sustainability, 14(21), 14465. https://doi.org/10.3390/su142114465

Mualem, Y. (1976). A new model for predicting hydraulic conductivity. Water Resources Research, 12(3), 513–522. https://doi.org/10.1029/WR012i003p00513

Nam, S., Gutierrez, M., Diplas, P., Petrie, J., Wayllace, A., Lu, N., & Munoz, J. J. (2010). SWCC of riverbank soils. Engineering Geology, 110(1–2), 1–10. https://doi.org/10.1016/j.enggeo.2009.09.003

Oh, S., Kim, Y. K., & Kim, J.-W. (2015). Modified van Genuchten-Mualem model. Water, 7(10), 5487–5502. https://doi.org/10.3390/w7105487

Rahardjo, H., Satyanaga, A., Mohamed, H., Haneena, M., Yee, S. C. I., & Shah, R. S. (2019). SWCC comparison using centrifuge and dew point. Geotechnical and Geological Engineering, 37, 659–672. https://doi.org/10.1007/s10706-018-0636-2

Rodrigues Neto, J. M. S., Bhandary, N. P., & Fujita, Y. (2023). Soil water index and landslide prediction. Geotechnics, 3(3), 686–699. https://doi.org/10.3390/geotechnics3030037

Singh, D. K., & Mehndiratta, S. (2024). Shallow footing on variably saturated slopes. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-024-00989-4

Shah, S. S. A., Turrakheil, K. S., & Naveed, M. (2024). Hydromechanical effects of wetting–drying cycles. Atmosphere, 15(11), 1368. https://doi.org/10.3390/atmos15111368

Teh, Y. Y., Wong, J. L., & Lee, M. L. (2023). Effect of fines on soil moisture cycles. Physics and Chemistry of the Earth, 129, 103313. https://doi.org/10.1016/j.pce.2022.103313

Terzaghi, K. (1950). Mechanism of landslides. GSA Berkey Volume, 83–123. https://doi.org/10.1130/Berkey.1950

Tian, W., Peiffer, H., Malengier, B., Xue, S., & Chen, Z. (2022). Pore gas pressure effects under rainfall. Applied Sciences, 12(21), 11060. https://doi.org/10.3390/app122111060

Van Genuchten, M. T. (1980). Closed-form equation for predicting hydraulic conductivity. Soil Science Society of America Journal, 44, 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Vogel, T., & Cislerova, M. (1988). Reliability of hydraulic conductivity from SWCC. Transport in Porous Media, 3, 1–15. https://doi.org/10.1007/BF00222683

Vogel, T., Van Genuchten, M. T., & Cislerova, M. (2000). Hydraulics near saturation. Advances in Water Resources, 24(2), 133–144. https://doi.org/10.1016/S0309-1708(00)00037-3

Wu, W., Yang, Y., Jiao, Y., & Wang, S. (2025). Unsaturated slope stability using vector-sum numerical manifold model. Computers and Geotechnics, 179, 106992.

Yao, Y., Li, J., Xiao, Z., & Xiao, H. (2021). SWCC and creep deformation of expansive soil. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.783273

Zhai, Q., Tian, G., Ye, W., Rahardjo, H., Dai, G., & Wang, S. (2022). SWCC-based unsaturated slope stability. Geomechanics and Engineering, 28(6), 637–644. https://doi.org/10.12989/gae.2022.28.6.637

Zhai, Q., Zhu, Y., Rahardjo, H., Satyanaga, A., Dai, G., Gong, W., & Ou, Y. (2023). Predicting SWCC for fine-grained soils. Acta Geotechnica, 18(10), 5359–5368. https://doi.org/10.1007/s11440-023-01833-4

Zhang, G. R., Qian, Y. J., Wang, Z. C., & Zhao, B. (2014). Rainfall infiltration in unsaturated soil slope. The Scientific World Journal, 567250. https://doi.org/10.1155/2014/567250

Downloads

Published

2025-12-29

How to Cite

Mihoubi, A., Benmoussa, S., Houam, A., & Laouar, M. S. (2025). Impact of SWCC Measurement Methods on the Numerical Investigations of Unsaturated Soils. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 144–161. https://doi.org/10.37385/jaets.v7i1.7287