Impact of SWCC Measurement Methods on the Numerical Investigations of Unsaturated Soils
DOI:
https://doi.org/10.37385/jaets.v7i1.7287Keywords:
soil-water characteristic curve, Unsaturated soils, Infiltration, Landslide, FLAC 2DAbstract
The soil-water characteristic curve SWCC, also known as the soil-water retention curve SWRC, describes the relationship between soil suction and water content in unsaturated soils. Many studies rely on specific laboratory testing methods without considering their impact on numerical simulations. This research investigates the effect of different SWCC measurement techniques on numerical modeling outcomes. Soil samples from the Tebessa region were tested using three methods: the filter paper method, the osmotic technique, and the axis translation technique. Numerical simulations were then conducted using FLAC software to analyze the influence of these methods on the hydromechanical properties of unsaturated soils and slope stability under two days of wetting conditions. The results indicate that the selected SWCC measurement method significantly affects the predicted vertical suction profile and influence the factor of safety (FOS) in slope stability analysis. This suggests that while accurate suction measurements are crucial for understanding soil behavior, their overall impact on slope stability predictions varies depending on the testing technique employed.
Downloads
References
Alnmr, A., Alzawi, M. O., Ray, R., Abdullah, S., & Ibraheem, J. (2024). Experimental investigation of the soil-water characteristic curves (SWCC) of expansive soil: Effects of sand content, initial saturation, and initial dry unit weight. Water, 16(5), 627. https://doi.org/10.3390/w16050627
Amarasinghe, M. P., Robert, D., Kulathilaka, S. A. S., Zhou, A., & Jayathissa, H. A. G. (2024). Slope stability analysis of unsaturated colluvial slopes based on case studies of rainfall-induced landslides. Bulletin of Engineering Geology and the Environment, 83, 476. https://doi.org/10.1007/s10064-024-03933-1
Angelaki, A., Bota, V., & Chalkidis, I. (2023). Estimation of hydraulic parameters from the soil water characteristic curve. Sustainability, 15(8), 6714. https://doi.org/10.3390/su15086714
ASTM. (2003). D5298-03: Standard test method for measurement of soil potential (suction) using filter paper.
Batali, L., & Andreea, C. (2016). Slope stability analysis using the unsaturated stress analysis: Case study. Procedia Engineering, 143, 284–291. https://doi.org/10.1016/j.proeng.2016.06.036
Bello, N., Satyanaga, A., Irawan, S., Zhai, Q., Gofar, N., & Kim, J. (2025). An innovative modelling technique for bimodal soil water characteristic curve under wetting process. Scientific Reports, 15(1), 11837. https://doi.org/10.1038/s41598-025-93987-2
Bicalho, K. V., Gomes Correia, A., Ferreira, S., Fleureau, S. M., & Marinho, F. A. M. (2007). Filter paper method of soil suction measurement. XIII Panamerican Conference on Soil Mechanics and Geotechnical Engineering.
Blatz, J. A., Cui, Y. J., & Oldecop, L. (2008). Vapour equilibrium and osmotic technique for suction control. Geotechnical and Geological Engineering, 26, 661–673. https://doi.org/10.1007/s10706-008-9196-1
Cai, F., & Ugai, K. (2004). Numerical analysis of rainfall effects on slope stability. International Journal of Geomechanics, 4, 69–78. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(69)
Carvalho, J. C. D., & Gitirana Jr., G. D. F. (2021). Unsaturated soils in the context of tropical soils. Soils and Rocks, 44, e2021068121. https://doi.org/10.28927/SR.2021.068121
Cao, W., Wan, Z., & Li, W. (2023). Stability of unsaturated soil slope considering stratigraphic uncertainty. Sustainability, 15(13), 10717. https://doi.org/10.3390/su151310717
Chen, H.-E., Tsai, T.-L., & Yang, J.-C. (2017). Threshold of slope instability induced by rainfall and lateral flow. Water, 9(9), 722. https://doi.org/10.3390/w9090722
Cho, S. E. (2016). Stability analysis of unsaturated soil slopes considering water-air flow caused by rainfall infiltration. Engineering Geology, 211, 184–197. https://doi.org/10.1016/j.enggeo.2016.07.008
Costa, K. R. C. B., Dantas, A. P. N., Cavalcante, A. L. B., & Assis, A. P. (2023). Probabilistic approach to transient unsaturated slope stability associated with precipitation event. Sustainability, 15(21), 15260. https://doi.org/10.3390/su152115260
Delage, P., Howat, M. D., & Cui, Y. J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Engineering Geology, 50(1–2), 31–48. https://doi.org/10.1016/S0013-7952(97)00083-5
Espinosa F., S. A., & El Naggar, M. H. (2024). Parametric study of rainfall-induced instability in fine-grained sandy soil. Geotechnics, 4(4), 1159–1174. https://doi.org/10.3390/geotechnics4040059
Fredlund, D. G., Morgenstern, N., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15, 313–321. https://doi.org/10.1139/t78-029
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061
Fredlund, D. G., Barbour, S. L., Fredlund, M. D., & Xing, A. (1996). The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal, 33, 440–448. https://doi.org/10.1139/t96-065
Fredlund, D. G. (2017). Role of the soil-water characteristic curve in unsaturated soil mechanics. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, 17–22.
Gardner, R. (1937). A method of measuring the capillary tension of soil moisture. Soil Science, 43, 277–293. https://doi.org/10.1097/00010694-193704000-00004
Goh, S. G., Leong, E. C., & Rahardjo, H. (2010). Shear strength equations for unsaturated soil under drying and wetting. Journal of Geotechnical and Geo-environmental Engineering, 136, 594–606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261
Hayek, M. (2024). Analytical solution for steady vertical flux through unsaturated soils based on van Genuchten-Mualem model. Journal of Hydrology, 634, 131066. https://doi.org/10.1016/j.jhydrol.2024.131066
Houston, W. N., Dye, H. B., Zapata, C. E., Perera, Y. Y., & Harraz, A. (2006). Determination of SWCC using one point suction measurement and standard curves. Unsaturated Soils 2006, 1482–1493. https://doi.org/10.1061/40802(189)123
Hosseini, S., Astaraki, F., Imam, S. M. R., Chalabii, J., & Movahedi Rad, M. (2024). Investigation of shear strength reduction in reinforced slopes. Buildings, 14(2), 432. https://doi.org/10.3390/buildings14020432
Hu, R., Hong, J.-M., Chen, Y.-F., & Zhou, C.-B. (2018). Hydraulic hysteresis effects on coupled flow–deformation processes. Applied Mathematical Modelling, 54, 221–245. https://doi.org/10.1016/j.apm.2017.09.023
Itasca Consulting Group. (2019). FLAC 8.1 Manual: Fluid–Mechanical Interaction.
Kang, S., Lee, S.-R., & Cho, S.-E. (2020). Slope stability analysis... Sustainability, 12(7), 2839. https://doi.org/10.3390/su12072839
Kang, S., & Kim, B. (2022). Effects of coupled hydro-mechanical model... Natural Hazards, 111, 1741–1769. https://doi.org/10.1007/s11069-021-05114-9
Lenhard, R. J., & Parker, J. C. (1987). A model for hysteretic constitutive relations. Water Resources Research, 23(12), 2197–2206. https://doi.org/10.1029/WR023i012p02187
Li, X., Hu, C., Li, F., & Gao, H. (2020). Determining soil-water characteristic curve of lime-treated loess. Scientific Reports, 10(1), 21569. https://doi.org/10.1038/s41598-020-78489-7
Liu, Q. Q., & Li, J. C. (2015). Effects of water seepage on slope stability. Procedia IUTAM, 17, 29–39. https://doi.org/10.1016/j.piutam.2015.06.006
Liu, Q., Guo, L., Miao, J., Guo, S., & Shu, J. (2024). Predicting SWCC of compacted quartz sand. Scientific Reports, 14(1), 22564. https://doi.org/10.1038/s41598-024-73821-x
Liu, S. Y., Shao, L. T., & Li, H. J. (2015). Slope stability: LEM vs FEM. Computers and Geotechnics, 63, 291–298. https://doi.org/10.1016/j.compgeo.2014.10.008
Mburu, J. W., Li, A.-J., Lin, H.-D., & Lu, C.-W. (2022). Unsaturated slopes under rainfall infiltration. Sustainability, 14(21), 14465. https://doi.org/10.3390/su142114465
Mualem, Y. (1976). A new model for predicting hydraulic conductivity. Water Resources Research, 12(3), 513–522. https://doi.org/10.1029/WR012i003p00513
Nam, S., Gutierrez, M., Diplas, P., Petrie, J., Wayllace, A., Lu, N., & Munoz, J. J. (2010). SWCC of riverbank soils. Engineering Geology, 110(1–2), 1–10. https://doi.org/10.1016/j.enggeo.2009.09.003
Oh, S., Kim, Y. K., & Kim, J.-W. (2015). Modified van Genuchten-Mualem model. Water, 7(10), 5487–5502. https://doi.org/10.3390/w7105487
Rahardjo, H., Satyanaga, A., Mohamed, H., Haneena, M., Yee, S. C. I., & Shah, R. S. (2019). SWCC comparison using centrifuge and dew point. Geotechnical and Geological Engineering, 37, 659–672. https://doi.org/10.1007/s10706-018-0636-2
Rodrigues Neto, J. M. S., Bhandary, N. P., & Fujita, Y. (2023). Soil water index and landslide prediction. Geotechnics, 3(3), 686–699. https://doi.org/10.3390/geotechnics3030037
Singh, D. K., & Mehndiratta, S. (2024). Shallow footing on variably saturated slopes. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-024-00989-4
Shah, S. S. A., Turrakheil, K. S., & Naveed, M. (2024). Hydromechanical effects of wetting–drying cycles. Atmosphere, 15(11), 1368. https://doi.org/10.3390/atmos15111368
Teh, Y. Y., Wong, J. L., & Lee, M. L. (2023). Effect of fines on soil moisture cycles. Physics and Chemistry of the Earth, 129, 103313. https://doi.org/10.1016/j.pce.2022.103313
Terzaghi, K. (1950). Mechanism of landslides. GSA Berkey Volume, 83–123. https://doi.org/10.1130/Berkey.1950
Tian, W., Peiffer, H., Malengier, B., Xue, S., & Chen, Z. (2022). Pore gas pressure effects under rainfall. Applied Sciences, 12(21), 11060. https://doi.org/10.3390/app122111060
Van Genuchten, M. T. (1980). Closed-form equation for predicting hydraulic conductivity. Soil Science Society of America Journal, 44, 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Vogel, T., & Cislerova, M. (1988). Reliability of hydraulic conductivity from SWCC. Transport in Porous Media, 3, 1–15. https://doi.org/10.1007/BF00222683
Vogel, T., Van Genuchten, M. T., & Cislerova, M. (2000). Hydraulics near saturation. Advances in Water Resources, 24(2), 133–144. https://doi.org/10.1016/S0309-1708(00)00037-3
Wu, W., Yang, Y., Jiao, Y., & Wang, S. (2025). Unsaturated slope stability using vector-sum numerical manifold model. Computers and Geotechnics, 179, 106992.
Yao, Y., Li, J., Xiao, Z., & Xiao, H. (2021). SWCC and creep deformation of expansive soil. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.783273
Zhai, Q., Tian, G., Ye, W., Rahardjo, H., Dai, G., & Wang, S. (2022). SWCC-based unsaturated slope stability. Geomechanics and Engineering, 28(6), 637–644. https://doi.org/10.12989/gae.2022.28.6.637
Zhai, Q., Zhu, Y., Rahardjo, H., Satyanaga, A., Dai, G., Gong, W., & Ou, Y. (2023). Predicting SWCC for fine-grained soils. Acta Geotechnica, 18(10), 5359–5368. https://doi.org/10.1007/s11440-023-01833-4
Zhang, G. R., Qian, Y. J., Wang, Z. C., & Zhao, B. (2014). Rainfall infiltration in unsaturated soil slope. The Scientific World Journal, 567250. https://doi.org/10.1155/2014/567250


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




