Generating Accurate Topographic Map by Integrating Drone Imagery and GNSS Data
DOI:
https://doi.org/10.37385/jaets.v7i1.7532Keywords:
High-Resolution Aerial Imagery, Large-Scale Topographic Maps, Orthomosaic Generation, RTK-GNSS, Ground Control Points, UAV PhotogrammetryAbstract
When operating in big or hard-to-reach areas, traditional topographic survey methods can be costly, difficult to organize, and time-consuming. Some of these technologies use total stations and GPS on the ground and aerial photogrammetry done by planes or helicopters. We need a better and cheaper approach to collect geographic data fast. This article discusses employing unmanned aerial vehicles (UAVs) for topographic surveying, mapping, and updating data as one option. A DJI Mavic 2 Pro quadcopter drone with a 20-megapixel digital camera took photographs of the Wasit University campus from 125 meters above the ground. The pictures indicated a space of around 0.43 km², with 80% of the front and 70% of the sides overlapping. The research area was turned into an orthomosaic by Agisoft PhotoScan Professional. This was then loaded into ArcMap so that features may be taken out. By comparing the coordinates of fourteen Ground Control Points (GCPs) that we got using the Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) mechanism, we were able to get a reference positional precision of 0.050 m RMSE. The results of this study demonstrate that geospatial data obtained from UAVs, when augmented by GCPs, can produce and update comprehensive maps with accuracy comparable to RTK GNSS and Total Station methodologies. Many individuals use these methods for surveys of land, buildings, and engineering.
Downloads
References
Abdulhassan, A. (2025). Integration of UAV and GNSS Data for Accurate Land Use Mapping at Wasit University. Wasit Journal of Engineering Sciences, 13(3), 74–85. https://doi.org/10.31185/wjes.Vol13.Iss3.742
Abdulhassan, A. A. (2020). Developing a three-dimensional city modeling with the absence of elevation data. Periodicals of Engineering and Natural Sciences, 8(4), 2507–2515. https://doi.org/10.21533/pen.v8i4.1752
Abdulhassan, A. A., Naji, A. A., & Abbood, H. H. (2021). Vertical Accuracy of Digital Elevation Models Based on Differential Global Positioning System. Iraqi Journal of Science, 62(SI 2), 91–99. https://doi.org/10.24996/ijs.2021.SI.2.10
Aber, J. S., Marzolff, I., Ries, J. B., & Aber, S. E. W. (2019). Unmanned Aerial Systems. In Small-Format Aerial Photography and UAS Imagery (pp. 119–139). Elsevier. https://doi.org/10.1016/B978-0-12-812942-5.00008-2
Ahmad, M. J., Ahmad, A., & Kanniah, K. D. (2018). Large scale topographic mapping based on unmanned aerial vehicle and aerial photogrammetric technique. IOP Conference Series: Earth and Environmental Science, 169, 012077. https://doi.org/10.1088/1755-1315/169/1/012077
Azmi, S. M., Ahmad, B., & Ahmad, A. (2014). Accuracy assessment of topographic mapping using UAV image integrated with satellite images. IOP Conference Series: Earth and Environmental Science, 18, 012015. https://doi.org/10.1088/1755-1315/18/1/012015
Beretta, F., Shibata, H., Cordova, R., Peroni, R. de L., Azambuja, J., & Costa, J. F. C. L. (2018). Topographic modelling using UAVs compared with traditional survey methods in mining. REM - International Engineering Journal, 71(3), 463–470. https://doi.org/10.1590/0370-44672017710074
Chaudhry, M. H., Ahmad, A., & Gulzar, Q. (2020). A comparative study of modern UAV platform for topographic mapping. IOP Conference Series: Earth and Environmental Science, 540(1), 012019. https://doi.org/10.1088/1755-1315/540/1/012019
Chi, Y.-Y., Lee, Y.-F., & Tsai, S.-E. (2016). Study on High Accuracy Topographic Mapping via UAV-based Images. IOP Conference Series: Earth and Environmental Science, 44, 032006. https://doi.org/10.1088/1755-1315/44/3/032006
Chio, S.-H., & Chiang, C.-C. (2020). Feasibility Study Using UAV Aerial Photogrammetry for a Boundary Verification Survey of a Digitalized Cadastral Area in an Urban City of Taiwan. Remote Sensing, 12(10), 1682. https://doi.org/10.3390/rs12101682
Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M., & Vosselman, G. (2016). Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689
Dlamini, S. M., & Ouma, Y. O. (2025). Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results. Geomatics, 5(2), 25. https://doi.org/10.3390/geomatics5020025
Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579–5590. https://doi.org/10.1016/j.aej.2021.04.011
Guan, S., Zhu, Z., & Wang, G. (2022). A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications. Drones, 6(5), 117. https://doi.org/10.3390/drones6050117
Hung, I.-K., Unger, D., Kulhavy, D., & Zhang, Y. (2019). Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones, 3(2), 46. https://doi.org/10.3390/drones3020046
Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M., & Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/ijgi10050285
Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. Journal of Marine Science and Engineering, 7(3), 63. https://doi.org/10.3390/jmse7030063
Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. Journal of Marine Science and Engineering, 7(3), 63. https://doi.org/10.3390/jmse7030063
Lee, B.-G. (2018). A Study of Three Dimensional DSM Development using Self-Developed Drone. Journal of the Korean Earth Science Society, 39(1), 46–52. https://doi.org/10.5467/JKESS.2018.39.1.46
Lu, R. S. (2020). Research on the Mapping of Large-Scale Topographic Maps Based on Low-Altitude Drone Aerial Photography System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10, 623–628. https://doi.org/10.5194/isprs-archives-XLII-3-W10-623-2020
Ludwig, M., M. Runge, C., Friess, N., Koch, T. L., Richter, S., Seyfried, S., Wraase, L., Lobo, A., Sebastià, M.-T., Reudenbach, C., & Nauss, T. (2020). Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics. Remote Sensing, 12(22), 3831. https://doi.org/10.3390/rs12223831
Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., & Pérez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1–10. https://doi.org/10.1016/j.jag.2018.05.015
Mikhail, E. M., Bethel, J. S., & McGlone, J. Chris. (2001). Introduction to modern photogrammetry. John Wiley & Sons Inc.
Mousa, Y. A., Sachit, M. S., & Hasan, A. F. (2025). A Hierarchical approach for efficient DTM and building footprint extraction from UAV images. Al-Qadisiyah Journal for Engineering Sciences, 18(3), 265–271. https://doi.org/10.30772/qjes.2024.151126.1284
Mukhlisin, M., Astuti, H. W., Kusumawardani, R., Wardihani, E. D., & Supriyo, B. (2023). Rapid and low cost ground displacement mapping using UAV photogrammetry. Physics and Chemistry of the Earth, 130, 103367. https://doi.org/10.1016/j.pce.2023.103367
Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x
Nwilag, B. D., Eyoh, A. E., & Ndehedehe, C. E. (2023). Digital topographic mapping and modelling using low altitude unmanned aerial vehicle. Modeling Earth Systems and Environment, 9(2), 1463–1476. https://doi.org/10.1007/s40808-022-01677-z
Pathak, S., Acharya, S., Bk, S., Karn, G., & Thapa, U. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1–8. https://doi.org/10.53093/mephoj.1350426
Pepe, M., Fregonese, L., & Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412–436. https://doi.org/10.1080/22797254.2018.1444945
Perera, G. S. N., & Nalani, H. A. (2022). UAVS FOR A COMPLETE TOPOGRAPHIC SURVEY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 441–447. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-441-2022
Quaye-Ballard, N. L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned Aerial Vehicle for Topographical Mapping of Inaccessible Land Areas in Ghana: A Cost-Effective Approach. International Federation of Surveyors: Copenhagen, Denmark.
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2012). UAV Photogrammetry for Mapping And 3d Modeling – Current Status and Future Perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 25–31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011
Ruwaimana, M., Satyanarayana, B., Otero, V., M. Muslim, A., Syafiq A., M., Ibrahim, S., Raymaekers, D., Koedam, N., & Dahdouh-Guebas, F. (2018). The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLOS ONE, 13(7), e0200288. https://doi.org/10.1371/journal.pone.0200288
Saleem, H. D., Abdulhassan, A. A., Imariq, S. M., & Shamkhi, M. S. (2025). Innovative mapping for soil consolidation settlement for various loading cases using GIS tools for Wasit province. Alexandria Engineering Journal, 123, 471–478. https://doi.org/10.1016/j.aej.2025.03.062
Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81–89. https://doi.org/10.26833/ijeg.696001
Seo, D.-M., Woo, H.-J., Hong, W.-H., Seo, H., & Na, W.-J. (2024). Optimization of Number of GCPs and Placement Strategy for UAV-Based Orthophoto Production. Applied Sciences, 14(8), 3163. https://doi.org/10.3390/app14083163
Shadhar, A. K., Mahmood, B. B., Abdulhassan, A. A., Mahjoob, A. M. R., & Shamkhi, M. S. (2023). Optimizing and coordinating the location of raw material suitable for cement manufacturing in Wasit Governorate, Iraq. Open Engineering, 13(1). https://doi.org/10.1515/eng-2022-0486
Sharma, M., & Garg, R. D. (2023). Building footprint extraction from aerial photogrammetric point cloud data using its geometric features. Journal of Building Engineering, 76, 107387. https://doi.org/10.1016/j.jobe.2023.107387
Silwal, A., Tamang, S., & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2), 45–52. https://doi.org/10.53093/mephoj.1176847
Sohl, M. A., & Mahmood, S. A. (2024). Low-Cost UAV in Photogrammetric Engineering and Remote Sensing: Georeferencing, DEM Accuracy, and Geospatial Analysis. Journal of Geovisualization and Spatial Analysis, 8(1), 14. https://doi.org/10.1007/s41651-024-00176-2
Stock, K., & Guesgen, H. (2016). Geospatial Reasoning With Open Data. In Automating Open Source Intelligence (pp. 171–204). Elsevier. https://doi.org/10.1016/B978-0-12-802916-9.00010-5
Syetiawan, A., Gularso, H., Kusnadi, G. I., & Pramudita, G. N. (2020). Precise topographic mapping using direct georeferencing in UAV. IOP Conference Series: Earth and Environmental Science, 500(1), 012029. https://doi.org/10.1088/1755-1315/500/1/012029
Tas, I., Kaska, M. S., & Akay, A. E. (2023). Assessment of Using UAV Photogrammetry Based DEM and Ground-Measurement Based DEM in Computer-Assisted Forest Road Design. European Journal of Forest Engineering, 9(1), 1–9. https://doi.org/10.33904/ejfe.1312514
Udin, W. S., & Ahmad, A. (2014). Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle. IOP Conference Series: Earth and Environmental Science, 18, 012027. https://doi.org/10.1088/1755-1315/18/1/012027
Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Application in GIS (4th Edition). McGraw-Hill.
Yu, J. J., Kim, D. W., Lee, E. J., & Son, S. W. (2020). Determining the Optimal Number of Ground Control Points for Varying Study Sites through Accuracy Evaluation of Unmanned Aerial System-Based 3D Point Clouds and Digital Surface Models. Drones, 4(3), 49. https://doi.org/10.3390/drones4030049
Zhang, J., Xu, S., Zhao, Y., Sun, J., Xu, S., & Zhang, X. (2023). Aerial orthoimage generation for UAV remote sensing: Review. Information Fusion, 89, 91–120. https://doi.org/10.1016/j.inffus.2022.08.007


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




