Generating Accurate Topographic Map by Integrating Drone Imagery and GNSS Data

Authors

  • Aqeel A. Abdulhassan Department of Civil Engineering, College of Engineering, Wasit University, Wasit, Iraq. https://orcid.org/0000-0003-1456-0204
  • Noor A. Alwan Department of Construction and Projects, Presidency of Wasit University, Wasit University, Wasit, Iraq.
  • Marwaa K. Azeez Department of Civil Engineering, College of Engineering, Wasit University, Wasit, Iraq.
  • Doaa T. Yaseen Department of Civil Engineering, College of Engineering, Wasit University, Wasit, Iraq.

DOI:

https://doi.org/10.37385/jaets.v7i1.7532

Keywords:

High-Resolution Aerial Imagery, Large-Scale Topographic Maps, Orthomosaic Generation, RTK-GNSS, Ground Control Points, UAV Photogrammetry

Abstract

When operating in big or hard-to-reach areas, traditional topographic survey methods can be costly, difficult to organize, and time-consuming. Some of these technologies use total stations and GPS on the ground and aerial photogrammetry done by planes or helicopters. We need a better and cheaper approach to collect geographic data fast. This article discusses employing unmanned aerial vehicles (UAVs) for topographic surveying, mapping, and updating data as one option. A DJI Mavic 2 Pro quadcopter drone with a 20-megapixel digital camera took photographs of the Wasit University campus from 125 meters above the ground. The pictures indicated a space of around 0.43 km², with 80% of the front and 70% of the sides overlapping. The research area was turned into an orthomosaic by Agisoft PhotoScan Professional. This was then loaded into ArcMap so that features may be taken out. By comparing the coordinates of fourteen Ground Control Points (GCPs) that we got using the Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) mechanism, we were able to get a reference positional precision of 0.050 m RMSE. The results of this study demonstrate that geospatial data obtained from UAVs, when augmented by GCPs, can produce and update comprehensive maps with accuracy comparable to RTK GNSS and Total Station methodologies. Many individuals use these methods for surveys of land, buildings, and engineering.

Downloads

Download data is not yet available.

References

Abdulhassan, A. (2025). Integration of UAV and GNSS Data for Accurate Land Use Mapping at Wasit University. Wasit Journal of Engineering Sciences, 13(3), 74–85. https://doi.org/10.31185/wjes.Vol13.Iss3.742

Abdulhassan, A. A. (2020). Developing a three-dimensional city modeling with the absence of elevation data. Periodicals of Engineering and Natural Sciences, 8(4), 2507–2515. https://doi.org/10.21533/pen.v8i4.1752

Abdulhassan, A. A., Naji, A. A., & Abbood, H. H. (2021). Vertical Accuracy of Digital Elevation Models Based on Differential Global Positioning System. Iraqi Journal of Science, 62(SI 2), 91–99. https://doi.org/10.24996/ijs.2021.SI.2.10

Aber, J. S., Marzolff, I., Ries, J. B., & Aber, S. E. W. (2019). Unmanned Aerial Systems. In Small-Format Aerial Photography and UAS Imagery (pp. 119–139). Elsevier. https://doi.org/10.1016/B978-0-12-812942-5.00008-2

Ahmad, M. J., Ahmad, A., & Kanniah, K. D. (2018). Large scale topographic mapping based on unmanned aerial vehicle and aerial photogrammetric technique. IOP Conference Series: Earth and Environmental Science, 169, 012077. https://doi.org/10.1088/1755-1315/169/1/012077

Azmi, S. M., Ahmad, B., & Ahmad, A. (2014). Accuracy assessment of topographic mapping using UAV image integrated with satellite images. IOP Conference Series: Earth and Environmental Science, 18, 012015. https://doi.org/10.1088/1755-1315/18/1/012015

Beretta, F., Shibata, H., Cordova, R., Peroni, R. de L., Azambuja, J., & Costa, J. F. C. L. (2018). Topographic modelling using UAVs compared with traditional survey methods in mining. REM - International Engineering Journal, 71(3), 463–470. https://doi.org/10.1590/0370-44672017710074

Chaudhry, M. H., Ahmad, A., & Gulzar, Q. (2020). A comparative study of modern UAV platform for topographic mapping. IOP Conference Series: Earth and Environmental Science, 540(1), 012019. https://doi.org/10.1088/1755-1315/540/1/012019

Chi, Y.-Y., Lee, Y.-F., & Tsai, S.-E. (2016). Study on High Accuracy Topographic Mapping via UAV-based Images. IOP Conference Series: Earth and Environmental Science, 44, 032006. https://doi.org/10.1088/1755-1315/44/3/032006

Chio, S.-H., & Chiang, C.-C. (2020). Feasibility Study Using UAV Aerial Photogrammetry for a Boundary Verification Survey of a Digitalized Cadastral Area in an Urban City of Taiwan. Remote Sensing, 12(10), 1682. https://doi.org/10.3390/rs12101682

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M., & Vosselman, G. (2016). Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689

Dlamini, S. M., & Ouma, Y. O. (2025). Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results. Geomatics, 5(2), 25. https://doi.org/10.3390/geomatics5020025

Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579–5590. https://doi.org/10.1016/j.aej.2021.04.011

Guan, S., Zhu, Z., & Wang, G. (2022). A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications. Drones, 6(5), 117. https://doi.org/10.3390/drones6050117

Hung, I.-K., Unger, D., Kulhavy, D., & Zhang, Y. (2019). Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones, 3(2), 46. https://doi.org/10.3390/drones3020046

Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M., & Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/ijgi10050285

Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. Journal of Marine Science and Engineering, 7(3), 63. https://doi.org/10.3390/jmse7030063

Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., & Rosebery, D. (2019). Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. Journal of Marine Science and Engineering, 7(3), 63. https://doi.org/10.3390/jmse7030063

Lee, B.-G. (2018). A Study of Three Dimensional DSM Development using Self-Developed Drone. Journal of the Korean Earth Science Society, 39(1), 46–52. https://doi.org/10.5467/JKESS.2018.39.1.46

Lu, R. S. (2020). Research on the Mapping of Large-Scale Topographic Maps Based on Low-Altitude Drone Aerial Photography System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10, 623–628. https://doi.org/10.5194/isprs-archives-XLII-3-W10-623-2020

Ludwig, M., M. Runge, C., Friess, N., Koch, T. L., Richter, S., Seyfried, S., Wraase, L., Lobo, A., Sebastià, M.-T., Reudenbach, C., & Nauss, T. (2020). Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics. Remote Sensing, 12(22), 3831. https://doi.org/10.3390/rs12223831

Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., & Pérez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1–10. https://doi.org/10.1016/j.jag.2018.05.015

Mikhail, E. M., Bethel, J. S., & McGlone, J. Chris. (2001). Introduction to modern photogrammetry. John Wiley & Sons Inc.

Mousa, Y. A., Sachit, M. S., & Hasan, A. F. (2025). A Hierarchical approach for efficient DTM and building footprint extraction from UAV images. Al-Qadisiyah Journal for Engineering Sciences, 18(3), 265–271. https://doi.org/10.30772/qjes.2024.151126.1284

Mukhlisin, M., Astuti, H. W., Kusumawardani, R., Wardihani, E. D., & Supriyo, B. (2023). Rapid and low cost ground displacement mapping using UAV photogrammetry. Physics and Chemistry of the Earth, 130, 103367. https://doi.org/10.1016/j.pce.2023.103367

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x

Nwilag, B. D., Eyoh, A. E., & Ndehedehe, C. E. (2023). Digital topographic mapping and modelling using low altitude unmanned aerial vehicle. Modeling Earth Systems and Environment, 9(2), 1463–1476. https://doi.org/10.1007/s40808-022-01677-z

Pathak, S., Acharya, S., Bk, S., Karn, G., & Thapa, U. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1–8. https://doi.org/10.53093/mephoj.1350426

Pepe, M., Fregonese, L., & Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412–436. https://doi.org/10.1080/22797254.2018.1444945

Perera, G. S. N., & Nalani, H. A. (2022). UAVS FOR A COMPLETE TOPOGRAPHIC SURVEY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 441–447. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-441-2022

Quaye-Ballard, N. L., Asenso-Gyambibi, D., & Quaye-Ballard, J. (2020). Unmanned Aerial Vehicle for Topographical Mapping of Inaccessible Land Areas in Ghana: A Cost-Effective Approach. International Federation of Surveyors: Copenhagen, Denmark.

Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2012). UAV Photogrammetry for Mapping And 3d Modeling – Current Status and Future Perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 25–31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011

Ruwaimana, M., Satyanarayana, B., Otero, V., M. Muslim, A., Syafiq A., M., Ibrahim, S., Raymaekers, D., Koedam, N., & Dahdouh-Guebas, F. (2018). The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLOS ONE, 13(7), e0200288. https://doi.org/10.1371/journal.pone.0200288

Saleem, H. D., Abdulhassan, A. A., Imariq, S. M., & Shamkhi, M. S. (2025). Innovative mapping for soil consolidation settlement for various loading cases using GIS tools for Wasit province. Alexandria Engineering Journal, 123, 471–478. https://doi.org/10.1016/j.aej.2025.03.062

Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81–89. https://doi.org/10.26833/ijeg.696001

Seo, D.-M., Woo, H.-J., Hong, W.-H., Seo, H., & Na, W.-J. (2024). Optimization of Number of GCPs and Placement Strategy for UAV-Based Orthophoto Production. Applied Sciences, 14(8), 3163. https://doi.org/10.3390/app14083163

Shadhar, A. K., Mahmood, B. B., Abdulhassan, A. A., Mahjoob, A. M. R., & Shamkhi, M. S. (2023). Optimizing and coordinating the location of raw material suitable for cement manufacturing in Wasit Governorate, Iraq. Open Engineering, 13(1). https://doi.org/10.1515/eng-2022-0486

Sharma, M., & Garg, R. D. (2023). Building footprint extraction from aerial photogrammetric point cloud data using its geometric features. Journal of Building Engineering, 76, 107387. https://doi.org/10.1016/j.jobe.2023.107387

Silwal, A., Tamang, S., & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2), 45–52. https://doi.org/10.53093/mephoj.1176847

Sohl, M. A., & Mahmood, S. A. (2024). Low-Cost UAV in Photogrammetric Engineering and Remote Sensing: Georeferencing, DEM Accuracy, and Geospatial Analysis. Journal of Geovisualization and Spatial Analysis, 8(1), 14. https://doi.org/10.1007/s41651-024-00176-2

Stock, K., & Guesgen, H. (2016). Geospatial Reasoning With Open Data. In Automating Open Source Intelligence (pp. 171–204). Elsevier. https://doi.org/10.1016/B978-0-12-802916-9.00010-5

Syetiawan, A., Gularso, H., Kusnadi, G. I., & Pramudita, G. N. (2020). Precise topographic mapping using direct georeferencing in UAV. IOP Conference Series: Earth and Environmental Science, 500(1), 012029. https://doi.org/10.1088/1755-1315/500/1/012029

Tas, I., Kaska, M. S., & Akay, A. E. (2023). Assessment of Using UAV Photogrammetry Based DEM and Ground-Measurement Based DEM in Computer-Assisted Forest Road Design. European Journal of Forest Engineering, 9(1), 1–9. https://doi.org/10.33904/ejfe.1312514

Udin, W. S., & Ahmad, A. (2014). Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle. IOP Conference Series: Earth and Environmental Science, 18, 012027. https://doi.org/10.1088/1755-1315/18/1/012027

Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Application in GIS (4th Edition). McGraw-Hill.

Yu, J. J., Kim, D. W., Lee, E. J., & Son, S. W. (2020). Determining the Optimal Number of Ground Control Points for Varying Study Sites through Accuracy Evaluation of Unmanned Aerial System-Based 3D Point Clouds and Digital Surface Models. Drones, 4(3), 49. https://doi.org/10.3390/drones4030049

Zhang, J., Xu, S., Zhao, Y., Sun, J., Xu, S., & Zhang, X. (2023). Aerial orthoimage generation for UAV remote sensing: Review. Information Fusion, 89, 91–120. https://doi.org/10.1016/j.inffus.2022.08.007

Downloads

Published

2025-12-29

How to Cite

Abdulhassan, A. A., Alwan, N. A., Azeez, M. K., & Yaseen, D. T. (2025). Generating Accurate Topographic Map by Integrating Drone Imagery and GNSS Data. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 617–630. https://doi.org/10.37385/jaets.v7i1.7532