Multipurpose Incubator Based on Microcontroller System With Distance Monitoring Feature Case Study For Crackers Drying

Authors

  • Heru Supriyono Universitas Muhammadiyah Surakarta
  • Anik Juliana Universitas Muhammadiyah Surakarta
  • Agus Supardi Universitas Muhammadiyah Surakarta
  • Pramudya Kurnia Universitas Muhammadiyah Surakarta
  • Muhammad Satria Ananta Universitas Muhammadiyah Surakarta
  • Mohammad Dwiki Aji Nugroho Universitas Muhammadiyah Surakarta
  • Helmi Hidayatullah Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.37385/jaets.v7i1.7604

Keywords:

Incubator, Drying Equipment, Temperature Control, Distance Monitoring, Microcontroller

Abstract

Most available commercial incubators are considered not appropriate for certain food processing such as for crackers drying and also considerably expensive. Besides, they do not have distance monitoring and control features. The objective of this article is to present the development process of an incubator prototype which has distance monitoring and control feature built based on the components commercially available in the market involving  traditional stove-based oven, electric heater, DHT22 temperature sensor, ESP8266 microcontroller, buzzer, and LCD OLED display. The incubator was equipped with the Blynk platform of a smartphone for distance control and monitoring. The functional test results showed that the developed incubator works well as expected. The calibration testing results suggested that temperature measurement by using the developed system has inaccuracy of 0.34% when compared to measurement by using a commercial thermometer. To validate its function in actual condition, the incubator was used for drying rice crackers. The rice crackers were dried at the temperature of 70  with a duration of 5 hours. It can be observed that the drying result by using the developed incubator was comparable to that of drying by direct sunlight on a sunny day with a duration of 16 hours.

Downloads

Download data is not yet available.

References

Abdullah, S., Musa, N., Rukunudin, I.H., & Shaari, A.R. (2019). Drying characteristics of fish cracker under different drying techniques. Food Research, 3(4), 357 - 361 (August 2019).

Adhiwibowo, W., Daru, A. F., & Hirzan, A. M. (2020). Temperature and humidity monitoring using DHT22 sensor and Cayenne API. Transformatika, 17(2), 209-214.

Anshori, T. R., Amertaningtyas, D., Rosyidi, D., Thohari, I., & Widyastuti, E. S. (2023). The influence of different drying methods on cowhide crackers at PT Java Mandiri's Partner on protein content, expandability, and organoleptic quality. Proceedings of BIO Web of Conferences 81, 00013(2023), 1-8. DOI: https://doi.org/10.1051/bioconf/20238100013.

Aryanto, I. K. A. A., Maneetham, D., & Crisnapati, P. N. (2023). Enhancing neonatal incubator energy management and monitoring through IoT-enabled CNN-LSTM combination predictive model. Applied Sciences 2023, 13, 12953, 1-20. https://doi.org/10.3390/app132312953.

Azhari, A., Nasution, T. I., Sinaga, S. H., & Sudiati, S. (2023). Design of monitoring system temperature and Humidity Using DHT22 Sensor and NRF24L01 Based on Arduino. Journal of Physics: Conference Series, 2421 (2023) 012018, 1-9. https://doi.org/10.1088/1742-6596/2421/1/012018

Chandra, R. A., Fadlilah, U., Wibowo, P., Saputra, F. T. N., & Sulasyono, R. R. S. (2022). Blind people stick tracking using Android smartphone and GPS technology. Khazanah Informatika, 8(1), 18-24.

Chavanne, X., & Frangi, J.-P. (2024). A Sensor to Monitor Soil Moisture, Salinity, and Temperature Profiles for Wireless Networks. Journal of Sensor and Actuator Network, 13, 32, 1-21. https://doi.org/10.3390/jsan13030032.

Cheepati, K. R., & Balal, N. (2024). Solar powered thermoelectric air conditioning for temperature control in poultry incubators. Sustainability 2024, 16(11), 4832, 1-19. https://doi.org/10.3390/su16114832.

Derisma,| Putra, A., & Yendri, D. (2020). Designing an automatic microcontroller-based drying machine of coffee beans. IPTEK The Journal of Technology and Science, 31(1), 11-17, 2020. https://doi.org/10.12962/j20882033.v31i1.5375.

Deshmukh, A., Batule, V., Nivangune, V., Borkar, T., & Anami, R. S. (2024). Wi-fi control robot using ESP 8266 NodeMCU. International Research Journal of Modernization in Engineering Technology and Science, 6(3), 3145-3148.

Desnanjaya, I. G. M. N., Ariana, A. A. G. B., & Nugraha, I. M. A. (2022). Room monitoring uses ESP-12E based DHT22 and BH1750 sensors. Journal of Robotics and Control (JRC), 3(2), 205-211. https://doi.org/10.18196/jrc.v3i2.11023

Dinulloh, M. C., & Kusban, M. (2022). IoT-Based Covid-19 Symptom Detector Prototype. Emitor, 22(2), 185-193.

Hubbard, B. R., Putman, L. I., Techtmann, S., & Pearce, J. M. (2021). Open source vacuum oven design for low-temperature drying: performance evaluation for recycled PET and biomass. Journal of Manuf.acturing Material Process 2021, 5, 52, 1-17. https://doi.org/10.3390/jmmp5020052.

Jusman, Y., Kusumabrata, M. I., Purwanto, K., & Nurkholid, M. A. F. (2024). DHT 11 sensor-based automatic chicken egg hatching incubator. E3S Web of Conferences 570, 01010 (2024), 1-10. https://doi.org/10.1051/e3sconf/202457001010.

Khan, T. (2020). An intelligent microwave oven with thermal imaging and temperature recommendation using deep learning. Applied System Innovation 2020, 3, 13, 1-17. https://doi.org/10.3390/asi3010013.

Kuhn, K., Strnad, C., Bowman, P., Young, K., Kroll, E., DeBruine, A., Knudson, I., Navin, M., Cheng, Q., & Swedish, M. (2024). Validation of a passive solar drying system using pineapple. Foods 2024, 13, 3081, 1-21. https://doi.org/10.3390/foods13193081.

Kusumaningrum, A., Herawati, E. R. N., Nurhikmat, A., & Restuti, A. (2020). Influence of drying method on chemical properties of dried cracker. Journal of IOP Conf. Series: Earth and Environmental Science, 462(2020) 012013, 1-6. https://doi.org/10.1088/1755-1315/462/1/012013.

Kusumaningrum A., Prasetyo D. J., Herawati E. R. N., & Nurhikmat A. (2019). Modelling the drying characteristics of the traditional Indonesian crackers "kerupuk". Research in Agricultural Engineering, 65, 137–144.

Lakshmi, M. J., Sameen, C. S., Maneesha, D., Dharani, G., & Mubeena, K. F. (2022). Smart home using Blynk app based on IoT. International Journal of Creative Research Thoughts (IJCRT), 10(5), d341-d345.

Leman, M. N., Mohamaddan, S., Suffian, M. S. Z. M., Mohtar, A. M. A. A. M., Mohtadzar, N. A. A., Junaidi, N., & Julaihi, S. A. (2017). Development of control system for keropok keping drying machine. Proceedings of the MATEC Web of Conferences 87, 02016, 1-8, (2017). https://doi.org/10.1051/matecconf/20178702016.

Maoloni, A., Cardinali, F., Milanovi´c, V., Reale, A., Boscaino, F., Di Renzo, T., Ferrocino, I., Rampanti, G., Garofalo, C., & Osimani, A. (2023). Impact of different drying methods on the microbiota, volatilome, color, and sensory traits of sea fennel (Crithmum maritimum L.) leaves. Molecules 2023, 28, 7207, 1-18. https://doi.org/10.3390/molecules28207207.

Mitu, N. S., Vassilev, V. T., & Tabany, M. (2021). Low cost, easy-to-use, IoT and cloud-based real-time environment monitoring system using ESP8266 microcontroller. International Journal of Internet of Things and Web Services, 6, 30-44.

Mohapatra, B. N., Jadhav, R. V., & Kharat, K. S. (2022). A prototype of smart agriculture system using internet of thing based on Blynk application platform. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 4(1), 24-28. https://doi.org/10.35882/jeeemi.v4i1.2.

Mohlalisi, S., Koetje, T., & Thamae, T. (2024). Design and development of an artificial incubator. Smart Agricultural Technology, 7(2024), 100387, 1-11. https://doi.org/10.1016/j.atech.2023.100387.

Muhammad, J., Risanto, J., & Gimin. (2021). Temperature characteristics of post-harvest technology equipment based on biomass waste energy using the internet of things telecontrol system. Journal of Physics Conference Series, 2049 (2021) 012023, 1-6. https://doi.org/10.1088/1742-6596/2049/1/012023.

Naimuddin, S., Wankhade, D., Parteki, M., Mesharam, T., Suryavanshi, V., & Bhagat, S. (2025). Low-cost wi-fi integration for PLC systems using ESP8266 for remote control and monitoring. International Journal of Innovative Science and Research Technology, 10(3), 1618-1625. https://doi.org/10.38124/ijisrt/25mar1449.

Nawawi, N. I. M., Ijod, G., Abas, F., Ramli, N.S., Adzahan, N. M., & Azman, E. M. (2023). Influence of different drying methods on anthocyanins composition and antioxidant activities of mangosteen (Garcinia mangostana L.) pericarps and LC-MS analysis of the active extract. Foods 2023, 12, 2351. https://doi.org/10.3390/foods12122351.

Oberloier, S., & Pearce, J. M. (2017). General design procedure for free and open-source hardware for scientific equipment. Designs 2018, 2(2), 1-15. https://doi.org/10.3390/designs2010002.

Peprah, F., Gyamfi, S., Amo-Boateng, M., Buadi, E., & Obeng, M. (2022). Design and construction of smart solar powered egg incubator based on GSM/IoT. Scientific African, 17(2022), e01326, 2022, 1-10. https://doi.org/10.1016/j.sciaf.2022.e01326.

Purwanti, S., Febriani, A., Mardeni, & Irawan, Y. (2021). Temperature monitoring system for egg incubators using Raspberry Pi3 based on Internet of Things (IoT). Journal of Robotics and Control (JRC), 2(5), January 2021, 349-352. https://doi.org/10.18196/jrc.25105.

Rurono, S., & Sunardi, S. (2023). Design the effectiveness of various temperature and humidity sensors for outdoor. Signal and Image Processing Letters, 5(3), 65-72. DOI: 10.31763/simple.v6i1.96.

Saputri, F. R., Linelson, R., Salehuddin, M., Nor, D. M., & Ahmad, M. I. (2025). Design and development of an irrigation monitoring and control system based on blynk internet of things and thingspeak. PLoS ONE, 20(4): e0321250. https://doi.org/10.1371/journal.pone.0321250.

Shoewu, O. O., Ayangbekun, O. J., & Adedoyin, M. A. (2020). Development of a microcontroller based tray dryer machine. International Journal of Innovative Research in Electronics and Communications (IJIREC), 7(3), 21-29. http://doi.org/10.20431/2349-4050.0703003.

Silva, A. F. R., Abreu, H., Silva, A. M. S., & Cardoso, S. M. (2019). Effect of oven-drying on the recovery of valuable compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus. Marine Drugs 2019, 17, 90, 1-17. https://doi.org/10.3390/md17020090.

Skawi´nska, E., & Zalewski, R. I. (2022). Economic impact of temperature control during food transportation— A COVID-19 perspective. Foods 2022, 11, 467. https://doi.org/10.3390/foods11030467.

Sozcu, S., Frajova, J., Wiener, J., Venkataraman, M., Tomkova, B., & Militky, J. (2024). Effect of drying methods on the thermal and mechanical behavior of bacterial cellulose aerogel. Gels 2024, 10, 474, 1-20. https://doi.org/10.3390/gels10070474.

Suhaidi, M. I. A., & Yunus, N. H. M. (2021). Development of Blynk IoT-based air quality monitoring system. Journal of Engineering Technology, 9, 63-68.

Suleiman, A. D., & Abdulhamid, I. G. (2024). Programmable Logic Controller based electric oven temperature remote monitoring and control. International Journal of Women in Technical Education and Employment, 5(1), 76-85.

Wang, P., Li, Y., Yu, R., Huang, D., Chen, S., & Zhu, S. (2023). Effects of different drying methods on the selenium bioaccessibility and antioxidant activity of Cardamine violifolia. Foods 2023, 12, 758. https://doi.org/10.3390/foods12040758.

Wei, J., Wang, L., Ma, X., Xu, Z., & Wang, Z. (2024). Effects of variabletemperature roasting on the flavor compounds of Xinjiang tannur roasted mutton. Foods 2024, 13, 3077, 1-17. https://doi.org/10.3390/foods13193077

Windesi, P. K. A., Sampebua, M. R., & Kmurawak, R. M. B. (2022). Iot-based home automation using NodeMCU ESP8266. Journal of Informatics Research, 4(4), 391-396. https://doi.org/10.34288/jri.v4i4.431

Zain, M. N., Othman, M., Mohd Rozi, M. A. R., & Paidi, Z. (2024). The Development of an IoT-Based Air Quality Monitoring System Using the Blynk Application. Journal of Computing Research and Innovation, 9(1), 157–166. https://doi.org/10.24191/jcrinn.v9i1.426.

Zhang, X., Xu, H., Feng, L., Liu, Z., Wang, T., Xu, J., Quan, S., & Huang, S. (2024). High-precision temperature control of laser crystals. Photonics 2024, 11, 745. https://doi.org/10.3390/photonics1108074.

Downloads

Published

2025-12-29

How to Cite

Supriyono, H., Juliana, A., Supardi, A., Kurnia, P., Ananta, M. S., Nugroho, M. D. A., & Hidayatullah, H. (2025). Multipurpose Incubator Based on Microcontroller System With Distance Monitoring Feature Case Study For Crackers Drying. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 582–598. https://doi.org/10.37385/jaets.v7i1.7604