From Exclusion to Empowerment: Redesigning E-Learning to Mitigate Risks for Disabled Students

Authors

  • Ummu Ajirah Abdul Rauf Graduate School of Business, Universiti Kebangsaan Malaysia
  • Mazzlida Mat Deli Graduate School of Business, Universiti Kebangsaan Malaysia
  • Nanang Husin Faculty of Economics Department, State University of Surabaya

DOI:

https://doi.org/10.37385/jaets.v7i1.7608

Keywords:

E-Learning, AI in Education, Disabled Students, Inclusion, Risk Mitigation

Abstract

This study explores how e-learning platforms can be redesigned to empower disabled students by mitigating their educational risks, such as accessibility barriers, communication challenges, and unequal participation. Using a qualitative approach, the research combines literature reviews, case studies, and user feedback to analyze current e-learning environments. It evaluates how AI technologies like ChatGPT can facilitate content accessibility, improve interaction, and support personalized learning experiences for disabled students. This study identifies key risks: limited content adaptability, poor user interface design, and social isolation, which hinder disabled students' academic engagement. It proposes a framework integrating assistive AI tools to transform these platforms into inclusive, low-risk learning environments. Results indicate that AI-driven adaptations can enhance content comprehension, foster collaboration, and improve learning outcomes for disabled students. This study focuses on higher education contexts and may require further validation across diverse educational levels and technological infrastructures. Additionally, reliance on evolving AI technology presents challenges related to affordability and accessibility. This study contributes to the growing field of inclusive education by offering a novel, AI-supported framework to redesign e-learning platforms. It addresses the gap between technological advancement and practical accessibility solutions, emphasizing risk mitigation for disabled students. The findings provide valuable insights for educators, policymakers, and technology developers aiming to create equitable, empowering learning experiences for all learners.

Downloads

Download data is not yet available.

References

Afonso, A., Morgado, L., Carvalho, I. C., & Spilker, M. J. (2025). Facing challenges in higher education: Enhancing accessibility and inclusion through flexible learning design. Education Sciences, 15(8), 1013. https://doi.org/10.3390/educsci15081013

Aithal, P. S., & Aithal, S. (2023a). The changing role of higher education in the era of AI-based GPTs. International Journal of Case Studies in Business, IT, and Education, 7(4), 183–197. https://doi.org/10.47992/ijcsbe.2581.6942.0267

Aithal, S., & Aithal, P. S. (2023b). Effects of AI-based ChatGPT on higher education libraries. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4453581

Alamien, S. F., Mulyono, S., Astuti, R., & Suswanti, E. (2023). The Effects of Tax Education and Tax Supervision During the Covid-19 Pandemic on Tax Revenue Through Tax Compliance. International Journal of Economics Development Research (IJEDR), 4(2), 925–943. https://doi.org/10.37385/ijedr.v4i3.3316

Alshahrani, A. (2023). The impact of ChatGPT on blended learning: Current trends and future research directions. International Journal of Data and Network Science, 7(4), 2029–2040. https://doi.org/10.5267/j.ijdns.2023.6.010

Atlas, S. (2023). ChatGPT for Higher Education and Professional Development: A Guide to Conversational AI. Retrieved from https://digitalcommons.uri.edu/cba_facpubs/548

Baidoo-Anu, D. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of Artificial Intelligence and Technology, 3(2), 45–63. https://doi.org/10.56741/jai.v3i2.104

Baker, R. S., & Hawn, A. (2022). Algorithmic bias in education: Examining the impacts of AI-driven decision-making in modern education. International Journal of Artificial Intelligence in Education, 32, 1052–1092. https://doi.org/10.1007/s40593-021-00285-9

Bergdahl, N., Nouri, J., & Fors, U. (2024). Unpacking student engagement in higher education learning analytics ecosystems. International Journal of Educational Technology in Higher Education, 21(1), 93. https://doi.org/10.1186/s41239-024-00493-y

Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member checking: A tool to enhance trustworthiness or merely a nod to validation? Qualitative Health Research, 26(13), 1802–1811. https://doi.org/10.1177/1049732316654870

Braun, V., & Clarke, V. (2023). Thematic analysis: A practical guide (2nd ed.). SAGE.

Bray, A. (2024). What next for Universal Design for Learning? A systematic review. British Journal of Educational Technology, 55(6), 2743–2766. https://doi.org/10.1111/bjet.13328

Budiarta, I. N., & Putra, K. E. S. (2025). Digital Payment Experience: The Influence of Hedonic Motivation and Price Value on QRIS Usage Intention. INVEST: Jurnal Inovasi Bisnis dan Akuntansi, 6(2), 398–407. https://doi.org/10.55583/invest.v6i2.1597

Chalkiadakis, A., Seremetaki, A., Kanellou, A., Kallishi, M., Morfopoulou, A., Moraitaki, M., & Mastrokoukou, S. (2024). Impact of Artificial Intelligence and Virtual Reality on Educational Inclusion. Education Sciences, 14(11), 1223. https://doi.org/10.3390/educsci14111223

Choi, E. (2023). A Comprehensive Inquiry into the Use of ChatGPT. International Journal of Arts, Humanities & Social Science, 4(11), 1–7. https://doi.org/10.56734/ijahss.v4n11a1

Contrino, M. F. (2024). Using an adaptive learning tool to improve student performance and satisfaction. Smart Learning Environments, 11(1), 1–24. https://doi.org/10.1186/s40561-024-00292-y

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE.

Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1206936

Desai, A., Xu, Z., & Wu, S. (2025). Toward Language Justice: Exploring Multilingual Captioning for Accessibility. Proceedings of the ACM on HCI. https://doi.org/10.1145/3706598.3713622

Duncan, J., Butler, K., & Punch, R. (2025). Experiences of undergraduate students with disability who withdraw. The Australian Educational Researcher. https://doi.org/10.1007/s13384-025-00894-6

Dyliaeva, K., Rothman, S. B., & Ghotbi, N. (2024). Challenges to inclusive education in Japanese higher education. Higher Learning Research Communications, 14(1). https://doi.org/10.18870/hlrc.v14i1.1453

Embarak, O. H., & Hawarna, S. (2023). Automated AI-driven System for Early Detection of At-risk Students. Procedia Computer Science, 231, 151–160. https://doi.org/10.1016/j.procs.2023.12.187

Fauzi, F., Tuhuteru, L., Sampe, F., Ausat, A. M. A., & Hatta, H. R. (2023). Role of ChatGPT in improving student productivity. Journal on Education, 5(4), 14886–14891. https://doi.org/10.31004/joe.v5i4.2563

Fernando, P., Wanaguru, I., Perera, M., & Ganegoda, D. (2021). Artificial Intelligence-Based Audio Plugin. ICITR 2021. https://doi.org/10.1109/icitr54349.2021.9657391

Filippou, K., Acquah, E. O., & Bengs, A. (2025). Inclusive policies and practices in higher education. Review of Education, 13, e70034. https://doi.org/10.1002/rev3.70034

Fitas, R. (2025). Inclusive education with AI. AI and Ethics, 5, 123–141. https://doi.org/10.1007/s43681-025-00824-3

Goudar, P., & Shilpa, R. N. R. (2023). ChatGPT: A Boon to Library Services. Retrieved from https://www.researchgate.net/publication/371760679_ChatGPT_A_Boon_toLibrary_Services

Hubbard, D. W. (2009). The failure of risk management. Wiley.

Hutahaean, T. J., Lussianda, E. O., & Rauf, U. A. A. (2023). Key Drivers of Police Performance. IJISIM, 1(2), 57–67. https://doi.org/10.55583/ijisim.v1i2.733

Ichsan, A. N., Despileny, I., Jannah, N. Z., & Albahi, M. (2024). Sharia Fintech. IJISIM, 2(1), 1–8. https://doi.org/10.55583/ijisim.v2i1.946

Iniesto, F., & Rodrigo, C. (2024). Accessibility in MOOCs. Journal of Interactive Media in Education, 2024(1), 20. https://doi.org/10.5334/jime.897

Jiali, S., Dayo, F., Jun, G., Shuangyao, L., & Najam, S. (2024). AI and personalized learning. PJLSS, 22(2), 7412–7428. https://doi.org/10.57239/pjlss-2024-22.2.00560

Khalil, M., Slade, S., & Prinsloo, P. (2023). Learning analytics and inclusiveness. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-023-09363-4

Kioupi, V., Nawire, A. W., Musungu, S., Nzuve, F., & Giannopoulos, G. (2023). Inclusive higher education in UK and Kenya. Sustainability, 15(18), 13540. https://doi.org/10.3390/su151813540

Kovari, A. (2024). AI-powered collaborative learning. Social Sciences & Humanities Open, 11, 101335. https://doi.org/10.1016/j.ssaho.2025.101335

Krolak, A., & Zajac, P. (2024). Accessibility of MOOCs. Universal Access in the Information Society, 23, 191–202. https://doi.org/10.1007/s10209-022-00927-2

Kusdiana, Y., Yusnelly, A., & Suryadi, N. (2024). Employee performance. IJISIM, 2(1), 34–41. https://doi.org/10.55583/ijisim.v2i1.994

Kvale, S., & Brinkmann, S. (2015). Interviews. SAGE.

Lata, P. (2024). AI in inclusive education. International Journal of Law Management & Humanities, 7(5), 416–434. https://doi.org/10.2139/ssrn.4987156

Lawson, A. (2021). The social and human rights models of disability. The International Journal of Human Rights, 25(2), 348–379. https://doi.org/10.1080/13642987.2020.1783533

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE.

Liu, Q., Nouri, J., & Zhang, L. (2023). Privacy and data protection in learning analytics. BJET, 54(6), 2639–2664. https://doi.org/10.1111/bjet.13388

Lomellini, A., Lowenthal, P. R., Snelson, C., & Trespalacios, J. H. (2025). Accessible and inclusive online learning. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-024-09424-2

Lowa, M. (2024). Democratizing access to education. SSRN. https://doi.org/10.2139/ssrn.4813758

Lowenthal, P. R., & Lomellini, A. (2023). Accessible online learning. TechTrends, 67(2), 384–392. https://doi.org/10.1007/s11528-022-00790-1

Melo-Lopez, V.-A., Basantes-Andrade, A., Gudino-Mejia, C.-B., & Hernandez-Martinez, E. (2025). Inclusive education and AI. Education Sciences, 15(5), 539. https://doi.org/10.3390/educsci15050539

Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research. Jossey-Bass.

Modak, M., Gharpure, P., & Sasikumar, M. (2022). Detecting learning disability using ML. International Journal of Health Sciences, 9050–9077. https://doi.org/10.53730/ijhs.v6ns2.7369

Narimawati, U., Munandar, D., Mauluddin, S., Winanti, M. B., & Sidik, R. (2023). Education and knowledge management. IJEDR, 4(3), 1380–1388. https://doi.org/10.37385/ijedr.v5i2.4719

National Center for Education Statistics. (2023). Fast facts: Students with disabilities. U.S. Department of Education. https://nces.ed.gov/fastfacts/display.asp?id=60

Navas-Bonilla, C. R., Calderon-Gomez, D., & Hernandez, A. (2025). Inclusive education through technology. Frontiers in Education, 10, 1527851. https://doi.org/10.3389/feduc.2025.1527851

Neumann, M. (2023). We need to talk about ChatGPT. https://doi.org/10.25968/opus-2467

Nieminen, J. H., Morina, A., & Biagiotti, G. (2024). Assessment and inclusion. Educational Research Review, 49, 100582. https://doi.org/10.1016/j.edurev.2023.100582

Office for Students. (2023). A statistical overview of higher education in England.

Office for Students. (2025). Equality of opportunity for disabled students.

Palanci, A., Palanci, M., & Ustun, A. (2024). Learning analytics in distance education. Education and Information Technologies, 29, 11841–11876. https://doi.org/10.1007/s10639-024-12737-5

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful sampling. Administration and Policy in Mental Health, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y

Patton, M. Q. (2015). Qualitative research and evaluation methods. SAGE.

Pierres, O., Laborde, C., & Bachelet, R. (2024). Generative AI in higher education. Education and Information Technologies, 29, 21053–21081. https://doi.org/10.1007/s10639-024-13134-8

Prinsloo, P. (2023). Multimodal learning analytics. BJET, 54(6), 2262–2276. https://doi.org/10.1111/bjet.13373

Purwati, A. A., Hamzah, Z., & Abdullah, S. I. N. W. (2023). Student techno-entrepreneurship. IJISIM, 1(2), 68–73. https://doi.org/10.55583/ijisim.v1i2.732

Rauf, U. A. A., Ahmed, S., Deli, M. M., Ashaari, M. J., Jamil, A. H., Abdullah, M. H. S. B., & Abdullah, S. I. N. W. (2024). Work coordination and risk management. JAETS, 6(1), 641–655. https://doi.org/10.37385/jaets.v6i1.6364

Rodriguez-Ascaso, A., Boticario, J. G., Finat, C., & Rodriguez, J. (2024). Accessibility in MOOCs. PLOS ONE, 19(7), e0299090. https://doi.org/10.1371/journal.pone.0299090

Rojas, J., Van Laer, S., & De Wever, B. (2023). AI-generated captions. CHI EA'23. https://doi.org/10.1145/3544549.3585724

Rose, D. H., & Meyer, A. (2022). Universal Design for Learning. CAST.

Rudolph, T., & Tan, J. (2023). ChatGPT and assessments. Journal of Adaptive Learning Technologies, 6(1), 1–9. https://doi.org/10.37074/jalt.2023.6.1.9

Siregar, K. E., & Putra, A. M. S. (2023). Management of Islamic educational institutions. INVEST, 4(1), 12–25. https://doi.org/10.55583/invest.v4i1.427

UNESCO. (2022). Higher Education Global Data Report.

van Manen, M. (2016). Researching lived experience. Routledge.

Wahyuni, K. E., Karunia, R. L. K., & Rahayu, N. S. (2025). Budget performance in education sector. IJEDR, 6(6), 3912–3925. https://doi.org/10.37385/ijedr.v6i6.9312

W3C/WAI. (2024). Web Content Accessibility Guidelines (WCAG) 2.2.

WebAIM. (2025). The WebAIM Million.

Yanti, M., Harika, N., & Angreini, Y. I. (2023). Student decision choosing management program. INVEST, 4(2), 350–360. https://doi.org/10.55583/invest.v4i2.529

Yin, R. K. (2018). Case study research and applications. SAGE.

Downloads

Published

2025-12-29

How to Cite

Rauf, U. A. A., Deli, M. M., & Husin, N. . (2025). From Exclusion to Empowerment: Redesigning E-Learning to Mitigate Risks for Disabled Students. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 129–143. https://doi.org/10.37385/jaets.v7i1.7608