Predicting Bentonite Plastic Concrete Performance Using Machine Learning
DOI:
https://doi.org/10.37385/jaets.v7i1.8199Keywords:
Bentonite plastic concrete (BPC), Ensemble learning, Forensic-Based Investigation Optimization (FBIO), Mechanical property prediction, SHAP analysisAbstract
This study develops an interpretable machine learning framework to predict the mechanical properties of bentonite plastic concrete (BPC), an essential material for low-permeability geotechnical structures. Traditional testing of BPC is time- and cost-intensive, while empirical equations often fail to capture the nonlinear effects of bentonite and curing conditions. To address these limitations, four ensemble learning models were optimized using the Forensic-Based Investigation Optimization (FBIO) algorithm, a parameter-free metaheuristic inspired by investigative search processes. The models were trained on three curated experimental datasets to predict slump, tensile strength, and elastic modules. Among all, XGB–FBIO achieved the highest accuracy for slump (R² = 0.98) and tensile strength (R² = 0.99), while GBRT–FBIO performed best for elastic modulus (R² = 0.97). SHapley Additive exPlanations (SHAP) analysis revealed curing time, cement, and water content as the most influential variables. The results demonstrate that the proposed framework can replace repetitive laboratory trials with data-driven insights, providing engineers with a reliable, explainable, and resource-efficient tool for optimizing BPC mix designs in environmental and geotechnical applications.
Downloads
References
Abbaslou, H., Ghanizadeh, A. R., & Amlashi, A. T. (2016). The compatibility of bentonite/sepiolite plastic concrete cut-off wall material. Construction and Building Materials, 124. https://doi.org/10.1016/j.conbuildmat.2016.08.116
Albaijan, I., Fakhri, D., Hussein Mohammed, A., Mahmoodzadeh, A., Hashim Ibrahim, H., Babeker Elhag, A., & Rashidi, S. (2023). Several machine learning models to estimate the effect of an acid environment on the effective fracture toughness of normal and reinforced concrete. Theoretical and Applied Fracture Mechanics, 126. https://doi.org/10.1016/j.tafmec.2023.103999
Alidoust, P., Goodarzi, S., Tavana Amlashi, A., & Sadowski, L. (2023). Comparative analysis of soft computing techniques in predicting the compressive and tensile strength of seashell containing concrete. European Journal of Environmental and Civil Engineering, 27(5). https://doi.org/10.1080/19648189.2022.2102081
Al-Luhybi, A. S., & Qader, D. N. (2021). Mechanical Properties of Concrete with Recycled Plastic Waste. Civil and Environmental Engineering, 17(2). https://doi.org/10.2478/cee-2021-0063
Alos Shepherd, D., & Dehn, F. (2023). Experimental Study into the Mechanical Properties of Plastic Concrete: Compressive Strength Development over Time, Tensile Strength and Elastic Modulus. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02521
Alyami, M., Nassar, R. U. D., Khan, M., Hammad, A. W., Alabduljabbar, H., Nawaz, R., Fawad, M., & Gamil, Y. (2024). Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Studies in Construction Materials, 20. https://doi.org/10.1016/j.cscm.2024.e02901
Amlashi, A. T., Abdollahi, S. M., Goodarzi, S., & Ghanizadeh, A. R. (2019). Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete. Journal of Cleaner Production, 230. https://doi.org/10.1016/j.jclepro.2019.05.168
Amlashi, A. T., Alidoust, P., Ghanizadeh, A. R., Khabiri, S., Pazhouhi, M., & Monabati, M. S. (2022). Application of computational intelligence and statistical approaches for auto-estimating the compressive strength of plastic concrete. European Journal of Environmental and Civil Engineering, 26(8). https://doi.org/10.1080/19648189.2020.1803144
Ashrafian, A., Gandomi, A. H., Rezaie-Balf, M., & Emadi, M. (2020). An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement. Measurement: Journal of the International Measurement Confederation, 152. https://doi.org/10.1016/j.measurement.2019.107309
Bahrami, M., & Mir Mohammad Hosseini, S. M. (2022). A new incorporative element to modify plastic concrete mechanical characteristics for cut-off wall construction in very soft soil media: Identification of tensile galvanized open-mesh distributer (TGOD) element. Construction and Building Materials, 350, 128884. https://doi.org/10.1016/J.CONBUILDMAT.2022.128884
Barakan, S., & Aghazadeh, V. (2021). The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. In Environmental Science and Pollution Research (Vol. 28, Issue 3). https://doi.org/10.1007/s11356-020-10985-9
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. In Classification and Regression Trees. https://doi.org/10.1201/9781315139470
CAO, Y., MIAO, Q.-G., LIU, J.-C., & GAO, L. (2013). Advance and Prospects of AdaBoost Algorithm. Acta Automatica Sinica, 39(6). https://doi.org/10.1016/s1874-1029(13)60052-x
Chen, T., & He, T. (2014). xgboost: Extreme Gradient Boosting. R Lecture, 2016.
Chou, J. S., & Nguyen, N. M. (2020). FBI inspired meta-optimization. Applied Soft Computing Journal, 93. https://doi.org/10.1016/j.asoc.2020.106339
Darimolyo, P. N., Zaki, A., & Riyadi, S. (2025). Prediction of natural frequency values in steel using multivariate regression. In M. T.I., P. S., A. E.A.M., A. B.C.R., A. C., S. D.M., H. A., & S. M.I. (Eds.), AIP Conference Proceedings (Vol. 3317, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0280774
de Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for regression models. Neurocomputing, 192. https://doi.org/10.1016/j.neucom.2015.12.114
Deng, A. A. N., Ikhsan, J., Riyadi, S., & Zaki, A. (2024). Intelligent Forecasting of Flooding Intensity Using Machine Learning. Civil Engineering Journal (Iran), 10(10), 3269–3291. https://doi.org/10.28991/CEJ-2024-010-10-010
Dhar, A. K., Himu, H. A., Bhattacharjee, M., Mostufa, M. G., & Parvin, F. (2023). Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. In Environmental Science and Pollution Research (Vol. 30, Issue 3). https://doi.org/10.1007/s11356-022-24277-x
Eftekhar Afzali, S. A., Shayanfar, M. A., Ghanooni-Bagha, M., Golafshani, E., & Ngo, T. (2024). The use of machine learning techniques to investigate the properties of metakaolin-based geopolymer concrete. Journal of Cleaner Production, 446. https://doi.org/10.1016/j.jclepro.2024.141305
Ekanayake, I. U., Meddage, D. P. P., & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e01059
Elwell, D. J., & Fu, G. (1995). Compression testing of concrete: cylinders vs. cube. In Special Report 119.
Faraj, R. H., Hama Ali, H. F., Sherwani, A. F. H., Hassan, B. R., & Karim, H. (2020). Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. In Journal of Building Engineering (Vol. 30). https://doi.org/10.1016/j.jobe.2020.101283
Fuqaha, S., Nugroho, G., & Zaki, A. (2025). Interpretable AI-Based Prediction of Elastic Modulus in Bamboo- Reinforced Polypropylene Using Mori – Tanaka and Neural Networks. Diyala Journal of Engineering Sciences, 8716(3), 104–123. https://doi.org/10.24237/djes.2025.18307
Fuqaha, S., Zaki, A., & Nugroho, G. (2025). Machine learning and RSM for Strength Forecasting in Sustainable SCGC. IIUM Engineering Journal, 26(3), 53–88. https://doi.org/https://doi.org/10.31436/iiumej.v26i3.3730
Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. In Frontiers in Built Environment (Vol. 9). https://doi.org/10.3389/fbuil.2023.1145591
Ghanizadeh, A. R., Abbaslou, H., Amlashi, A. T., & Alidoust, P. (2019). Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Frontiers of Structural and Civil Engineering, 13(1). https://doi.org/10.1007/s11709-018-0489-z
Golafshani, E. M., & Behnood, A. (2021). Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach. Construction and Building Materials, 291. https://doi.org/10.1016/j.conbuildmat.2021.123314
Guan, Q., & Zhang, P. (2011). Effect of clay dosage on mechanical properties of plastic concrete. Advanced Materials Research, 250–253. https://doi.org/10.4028/www.scientific.net/AMR.250-253.664
Hameed, R., Gul, M. M., Tahir, M., Shahzad, S., Jamil, O., Awais, M., & Asghar, Z. (2023). Mechanical Properties of Plastic Concrete Made Using Recycled Aggregates for Paving Blocks. International Journal of Engineering Research in Africa, 63. https://doi.org/10.4028/p-hmjs0o
Hoang, N. D. (2022). Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study. Mathematics, 10(20). https://doi.org/10.3390/math10203771
Hu, L., Gao, D., Li, Y., & Song, S. (2012). Analysis of the influence of long curing age on the compressive strength of plastic concrete. Advanced Materials Research, 382. https://doi.org/10.4028/www.scientific.net/AMR.382.200
Hu, L. M., Lv, X. L., Gao, D. Y., Yan, K. B., & Song, S. Q. (2014). Analysis of the influence of clay dosage and curing age on the strength of plastic concrete. Advanced Materials Research, 936. https://doi.org/10.4028/www.scientific.net/AMR.936.1433
Huang, S., Li, C., Zhou, J., Mei, X., & Zhang, J. (2025). Use of BOIvy Optimization Algorithm-Based Machine Learning Models in Predicting the Compressive Strength of Bentonite Plastic Concrete. Materials, 18(13). https://doi.org/10.3390/ma18133123
Iftikhar, B., Alih, S. C., Vafaei, M., Elkotb, M. A., Shutaywi, M., Javed, M. F., Deebani, W., Khan, M. I., & Aslam, F. (2022). Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 348. https://doi.org/10.1016/j.jclepro.2022.131285
Inqiad, W. B., Javed, M. F., Onyelowe, K., Siddique, M. S., Asif, U., Alkhattabi, L., & Aslam, F. (2024). Soft computing models for prediction of bentonite plastic concrete strength. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-69271-0
Iqbal, M. F., Liu, Q. feng, Azim, I., Zhu, X., Yang, J., Javed, M. F., & Rauf, M. (2020). Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. Journal of Hazardous Materials, 384. https://doi.org/10.1016/j.jhazmat.2019.121322
Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585. https://doi.org/10.1016/j.ins.2021.11.036
Keramati, M., Goodarzi, S., Moradi Moghadam, H., & Ramesh, A. (2019). Evaluating the stress–strain behavior of MSW with landfill aging. International Journal of Environmental Science and Technology, 16(11). https://doi.org/10.1007/s13762-018-2106-z
Khan, M., Ali, M., Najeh, T., & Gamil, Y. (2024). Computational prediction of workability and mechanical properties of bentonite plastic concrete using multi-expression programming. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56088-0
Kibrete, F., Trzepiecinski, T., Gebremedhen, H. S., & Woldemichael, D. E. (2023). Artificial Intelligence in Predicting Mechanical Properties of Composite Materials. Journal of Composites Science, 7(9). https://doi.org/10.3390/jcs7090364
Kumar, P., Shekhar Kamal, S., Kumar, A., Kumar, N., & Kumar, S. (2025). Compressive strength of bentonite concrete using state-of-the-art optimised XGBoost models. Nondestructive Testing and Evaluation, 40(10), 4868–4891. https://doi.org/10.1080/10589759.2024.2431634
Lal Mohiddin, S., Ravi Prasad, D., & Ramaseshu, D. (2025). A review of machine learning models for concrete strength prediction and mix optimization. Journal of Building Pathology and Rehabilitation, 10(2). https://doi.org/10.1007/s41024-025-00636-2
Li, F., Rana, M. S., & Qurashi, M. A. (2025). Advanced machine learning techniques for predicting concrete mechanical properties: a comprehensive review of models and methodologies. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(1). https://doi.org/10.1007/s41939-024-00672-4
Liu, Q., Zhou, Y., Lu, J., & Zhou, Y. (2020). Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. In Chemosphere (Vol. 241). https://doi.org/10.1016/j.chemosphere.2019.125043
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-December.
Ly, H. B., Nguyen, M. H., & Pham, B. T. (2021). Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Computing and Applications, 33(24). https://doi.org/10.1007/s00521-021-06321-y
Mahboubi, A., & Ajorloo, A. (2005). Experimental study of the mechanical behavior of plastic concrete in triaxial compression. Cement and Concrete Research, 35(2). https://doi.org/10.1016/j.cemconres.2004.09.011
McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11(6). https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597)
Moghaddam, H. M., Fahimifar, A., Ebadi, T., Keramati, M., & Siddiqua, S. (2025). Assessment of leachate-contaminated clays using experimental and artificial methods. Journal of Rock Mechanics and Geotechnical Engineering, 17(1), 524–538. https://doi.org/10.1016/J.JRMGE.2024.02.050
Mousavi, S. M., Aminian, P., Gandomi, A. H., Alavi, A. H., & Bolandi, H. (2012). A new predictive model for compressive strength of HPC using gene expression programming. Advances in Engineering Software, 45(1). https://doi.org/10.1016/j.advengsoft.2011.09.014
Nafees, A., Althoey, F., khan, S., Sikandar, M. A., Alyami, S. H., Rehman, M. F., Javed, M. F., & Eldin, S. M. (2023). Plastic concrete mechanical properties prediction based on experimental data. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e01831
Ni, B., Guo, S., Zhu, D., & Rahman, M. Z. (2025). A review on properties and multi-objective performance predictions of concrete based on machine learning models. Materials Today Communications, 44. https://doi.org/10.1016/j.mtcomm.2025.112017
Nurega, B. A., Zaki, A., & Riyadi, S. (2025). Machine learning method to predict the compressive strength of cement mortar using a regression learner. In N. T., S. H., B. C., & M. I. (Eds.), AIP Conference Proceedings (Vol. 3320, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0286909
Pisheh, Y. P., & Mir Mohammad Hosseini, S. M. (2012). Stress-strain behavior of plastic concrete using monotonic triaxial compression tests. Journal of Central South University of Technology (English Edition), 19(4). https://doi.org/10.1007/s11771-012-1118-y
Qu, Z., Liu, H., Wang, Z., Xu, J., Zhang, P., & Zeng, H. (2021). A combined genetic optimization with AdaBoost ensemble model for anomaly detection in buildings electricity consumption. Energy and Buildings, 248. https://doi.org/10.1016/j.enbuild.2021.111193
Ramezani, M., Choe, D.-E., & Rasheed, A. (2025). Prediction of the flexural strength and elastic modulus of cementitious materials reinforced with carbon nanotubes: An approach with artificial intelligence. Engineering Applications of Artificial Intelligence, 150. https://doi.org/10.1016/j.engappai.2025.110544
Rathakrishnan, V., Bt. Beddu, S., & Ahmed, A. N. (2022). Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12890-2
Rozzaq, M. F. H., Zaki, A., & Riyadi, S. (2025). Predicting compressive strength of concrete with different grade using adaptive neuro fuzzy inference system. In M. T.I., P. S., A. E.A.M., A. B.C.R., A. C., S. D.M., H. A., & S. M.I. (Eds.), AIP Conference Proceedings (Vol. 3317, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0279547
Safavian, S. R., & Landgrebe, D. (1991). A Survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3). https://doi.org/10.1109/21.97458
Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Application of Support Vector Regression for Modeling Low Flow Time Series. KSCE Journal of Civil Engineering, 23(2). https://doi.org/10.1007/s12205-018-0128-1
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2). https://doi.org/10.1007/bf00116037
Schapire, R. E. (2009). A Short Introduction to Boosting. Society, 14(5). https://doi.org/10.1.1.112.5912
Shubber, M. D. H., & Kebria, D. Y. (2023). Thermal Recycling of Bentonite Waste as a Novel and a Low-Cost Adsorbent for Heavy Metals Removal. Journal of Ecological Engineering, 24(5). https://doi.org/10.12911/22998993/161805
Svetnik, V., Liaw, A., Tong, C., Christopher Culberson, J., Sheridan, R. P., & Feuston, B. P. (2003). Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, 43(6). https://doi.org/10.1021/ci034160g
Tavana Amlashi, A., Ghanizadeh, A., Abbaslou, H., & Alidoust, P. (2020). AUT Journal of Civil Engineering Developing three hybrid machine learning algorithms for predicting the mechanical properties of plastic concrete samples with different geometries. Civil Eng, 4(1).
Tavana Amlashi, A., Mohammadi Golafshani, E., Ebrahimi, S. A., & Behnood, A. (2023). Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches. European Journal of Environmental and Civil Engineering, 27(2). https://doi.org/10.1080/19648189.2022.2068657
Turney, S. (2022). Coefficient of determination (R2): Calculation and interpretation. Scribbr.
Ullah, A., Yang, Y., Ullah, W., Ayub, B., Alzlfawi, A., & Iqbal, I. (2025). Toward transparent AI: Predicting strength of fly ash foam composite concrete using explainable ML models. Structural Concrete. https://doi.org/10.1002/suco.70302
Ullah, H. S., Khushnood, R. A., Farooq, F., Ahmad, J., Vatin, N. I., & Ewais, D. Y. Z. (2022). Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches. Materials, 15(9). https://doi.org/10.3390/ma15093166
Wu, H., Liu, C., Shi, S., & Chen, K. (2020). Experimental research on the physical and mechanical properties of concrete with recycled plastic aggregates. Journal of Renewable Materials, 8(7). https://doi.org/10.32604/jrm.2020.09589
Xu, H., Zhou, J., Asteris, P. G., Armaghani, D. J., & Tahir, M. M. (2019). Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate. Applied Sciences (Switzerland), 9(18). https://doi.org/10.3390/app9183715
Yang, H., Liu, X., & Song, K. (2022). A novel gradient boosting regression tree technique optimized by improved sparrow search algorithm for predicting TBM penetration rate. Arabian Journal of Geosciences, 15(6). https://doi.org/10.1007/s12517-022-09665-4
Yang, Y., Liu, G., Zhang, H., Zhang, Y., & Yang, X. (2024). Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms. Buildings, 14(1). https://doi.org/10.3390/buildings14010190
Zeng, Z., Zhu, Z., Yao, W., Wang, Z., Wang, C., Wei, Y., Wei, Z., & Guan, X. (2022). Accurate prediction of concrete compressive strength based on explainable features using deep learning. Construction and Building Materials, 329. https://doi.org/10.1016/j.conbuildmat.2022.127082
Zhang, J., Wang, R., Lu, Y., & Huang, J. (2024). Prediction of Compressive Strength of Geopolymer Concrete Landscape Design: Application of the Novel Hybrid RF–GWO–XGBoost Algorithm. Buildings, 14(3). https://doi.org/10.3390/buildings14030591
Zhang, M., & Kang, R. (2025). Machine learning methods for predicting the durability of concrete materials: A review. Advances in Cement Research. https://doi.org/10.1680/jadcr.24.00133
Zhang, P., Guan, Q., & Li, Q. (2013). Mechanical properties of plastic concrete containing bentonite. Research Journal of Applied Sciences, Engineering and Technology, 5(4). https://doi.org/10.19026/rjaset.5.4867
Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. In Ensemble Methods: Foundations and Algorithms. https://doi.org/10.1201/b12207


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




