Signal Characteristics of Land Mobile Satellites in Urban and Suburban Equatorial Regions: A Study of S/N Ratios in Fixed and Mobile Conditions

Authors

  • Zulfajri Basri Hasanuddin Department of Electrical Engineering, Universitas Hasanuddin
  • Kiyotaka Fujisaki Department of Information and Communication Engineering, Fukuoka Institute of Technology, Japan
  • Limbran Sampebatu Department of Electrical Engineering, Universitas Hasanuddin, Indonesia

Keywords:

GPS, Signal strength, Urban, Suburban, Land mobile satellite, Environmental factors, Equatorial regions

Abstract

The increasing demand for mobile communication services in Indonesia underscores the necessity for reliable satellite mapping systems, particularly in equatorial regions where empirical data is scarce. This study aims to fill this research gap by evaluating the signal strength and quality for land mobile satellites in Pare-Pare City and Sidrap Regency. Utilizing a cost-effective laptop-based system alongside a handheld GPS receiver, we conducted measurements under both fixed and mobile conditions at various locations. Our analysis, performed using Matlab R2023b, identified notable variations in Signal-to-Noise Ratio (SNR), primarily ranging from 20 to 49 dBHz, with peak values of around 50 dBHz recorded in suburban areas. These findings indicate that local obstructions significantly affect GPS accuracy. The implications of this research are twofold: theoretically, it enriches the existing literature on GPS performance in equatorial environments, and practically, it offers actionable insights for optimizing satellite deployments to enhance communication reliability. By providing essential empirical evidence, this study represents a valuable contribution to the understanding of satellite communication dynamics in Indonesia, paving the way for more effective navigation and communication solutions in challenging equatorial settings.

Downloads

Download data is not yet available.

References

Abidin, H. Z., Andreas, H., Gumilar, I., & Sidiq, T. P. (2008). GPS observation for monitoring land subsidence in urban areas of Indonesia. Environmental Earth Sciences, 55(1), 150–159. https://doi.org/10.1007/s12665-007-0059-9

Abidin, W. A. W. Z., Fujisaki, K., & Tateiba, M. (2008). Novel approach to determine the effects of mobile satellite environment using a portable GPS receiver with built-in atenna. American Journal of Applied Sciences, 5(8), 1079-1082. http://doi.org/10.3844/ajassp.2008.1079.1082

Ali, A., & Thomson, M. (2020). Assessment of GPS signal reliability under urban multipath conditions. IEEE Access, 8, 11045–11056. https://doi.org/10.1109/ACCESS.2020.2965972

Ali, S., Hassan, M., & Ahmed, K. (2021). Urban multipath mitigation for GNSS receivers: Challenges and solutions. IEEE Transactions on Aerospace and Electronic Systems, 57(4), 2984–2997. https://doi.org/10.1109/TAES.2021.3067784

Bilich, A., & Larson, K. M. (2007). Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6), RS6003. https://doi.org/10.1029/2007RS003652

Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS multipath using signal-to-noise ratio observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0184-0

Bock, Y., & Kalligeros, E. (2022). The impact of urban density on GNSS performance in equatorial regions. Journal of Navigation, 75(5), 1021–1035. https://doi.org/10.1017/S0373463322000567

Cai, Z., Liu, H., & Zhang, P. (2021). Evaluating GPS signal attenuation in equatorial Asia using GNSS field measurements. Remote Sensing, 13(22), 4522. https://doi.org/10.3390/rs13224522

Chen, L., Zhao, H., & Li, J. (2022). Effects of vegetation moisture and canopy density on L-band GPS signals in tropical environments. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11. https://doi.org/10.1109/TGRS.2021.3134805

Doe, J., Lin, X., & Park, T. (2021). Performance analysis of differential GPS under urban interference. Navigation: Journal of the Institute of Navigation, 68(3), 645–658. https://doi.org/10.1002/navi.460

El-Rabbany, A. (2018). Introduction to GPS: The Global Positioning System (3rd ed.). Artech House.

Ezeh, C. I., Oteri, A. U., & Adebayo, A. A. (2023). Impact of equatorial rain fade and foliage on Ka-band satellite signal strength in West Africa. Journal of Atmospheric and Solar-Terrestrial Physics, 243, 106993. https://doi.org/10.1016/j.jastp.2023.106993

Feng, S., Li, X., & Wang, C. (2020). Satellite signal modeling for GNSS applications in equatorial regions. Advances in Space Research, 66(12), 2702–2712. https://doi.org/10.1016/j.asr.2020.08.023

Feng, Y., Liu, J., & Zhou, W. (2021). Analysis of GNSS performance in tropical foliage environments. GPS Solutions, 25(3), 79. https://doi.org/10.1007/s10291-021-01089-y

Gao, J., Tan, Y., & Wu, S. (2021). Assessing city-scale impacts on GPS accuracy using high-resolution 3D urban models. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 1–14. https://doi.org/10.1016/j.isprsjprs.2021.03.005

Gao, R., Xu, Q., & Zhang, Y. (2023). A comparative analysis of multipath and scintillation effects on GNSS performance. IEEE Access, 11, 45522–45535. https://doi.org/10.1109/ACCESS.2023.3262459

Geng, C., Chen, X., & Zhao, D. (2021). Modeling urban multipath interference for GNSS performance optimization. GPS Solutions, 25(2), 67. https://doi.org/10.1007/s10291-021-01023-2

Geng, D., Adebayo, O., & Li, P. (2022). Evaluating environmental impacts on satellite signal degradation in dense urban areas. Remote Sensing Letters, 13(7), 733–742. https://doi.org/10.1080/2150704X.2022.2094317

Gharanjik, A., Di Renzo, M., & Rinaldi, F. (2018). Channel modeling for mobile satellite communications in urban and suburban environments. IEEE Communications Surveys & Tutorials, 20(2), 1134–1159. https://doi.org/10.1109/COMST.2018.2796271

Han, C., Zhang, W., & Liang, X. (2021). Statistical analysis of SNR variation in low-Earth-orbit satellite communications. IEEE Access, 9, 87293–87304. https://doi.org/10.1109/ACCESS.2021.3083978

Hegarty, C. J., & Kaplan, E. D. (2020). Understanding GPS/GNSS: Principles and Applications (3rd ed.). Artech House.

He, X., Wang, Y., & Sun, J. (2021). Comparative analysis of GNSS signal behavior under multipath fading. Sensors, 21(14), 4759. https://doi.org/10.3390/s21144759

Huang, J., & Li, X. (2022). GNSS signal degradation modeling in tropical cities. IEEE Transactions on Aerospace and Electronic Systems, 58(6), 4519–4529. https://doi.org/10.1109/TAES.2022.3168715

Huang, X., & Li, Y. (2023). Evaluating urban satellite visibility and SNR dynamics in Southeast Asia. Remote Sensing Applications: Society and Environment, 31, 101008. https://doi.org/10.1016/j.rsase.2023.101008

Huang, Y., & Zhao, M. (2023). Spatial SNR variation in tropical suburban satellite communications. Acta Astronautica, 211, 112–121. https://doi.org/10.1016/j.actaastro.2023.03.012

Jiang, F., & Zhao, L. (2021). Investigation of GPS accuracy under equatorial scintillation. Radio Science, 56(6), e2021RS007228. https://doi.org/10.1029/2021RS007228

Jiao, Y., Zhang, W., & Wu, J. (2020). Performance comparison between low-cost GPS and survey-grade GNSS receivers. Measurement, 155, 107555. https://doi.org/10.1016/j.measurement.2020.107555

Kajal, S., Ahmed, F., & Liu, B. (2022). Evaluating low-cost GNSS receivers for high-precision applications. Sensors, 22(8), 3024. https://doi.org/10.3390/s22083024

Kaul, S., & Giambene, G. (2023). Adaptive power control techniques for mobile satellite communication links. IEEE Transactions on Wireless Communications, 22(5), 3014–3028. https://doi.org/10.1109/TWC.2023.3254459

Kogan, L. (2022). Effects of urbanization on GPS performance in equatorial megacities. Urban Science, 6(2), 38. https://doi.org/10.3390/urbansci6020038

Lee, D., & Kim, H. (2020). Analysis of GNSS SNR under suburban obstructions. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2514–2523. https://doi.org/10.1109/TAES.2019.2946204

Martinez, J., Sanchez, P., & Torres, M. (2022). Satellite signal reflection and attenuation in dense urban structures. IEEE Access, 10, 35051–35063. https://doi.org/10.1109/ACCESS.2022.3162501

Nguyen, T. K., & Patel, D. (2021). Urbanization effects on GPS reliability: A case study in Kuala Lumpur. Journal of Navigation, 74(6), 1281–1294. https://doi.org/10.1017/S0373463321000307

Niu, P., & Zhang, Y. (2021). Enhancing positioning accuracy using DGPS and SBAS systems in urban environments. IEEE Access, 9, 142937–142948. https://doi.org/10.1109/ACCESS.2021.3120653

Niu, P., & Zhang, Y. (2023). Recent trends in GNSS augmentation and error mitigation. IEEE Aerospace and Electronic Systems Magazine, 38(3), 52–67. https://doi.org/10.1109/MAES.2023.3254765

Ojo, J. S., Ajewole, M. O., & Kolawole, L. B. (2019). Rain attenuation and SNR degradation of Ku-band satellite signals in tropical regions. Radio Science, 54(8), 729–742. https://doi.org/10.1029/2019RS006828

Peterson, A., & Fidell, T. (2021). Evaluating urban environmental factors in satellite signal degradation. IEEE Access, 9, 112045–112058. https://doi.org/10.1109/ACCESS.2021.3102029

Prakash, R., Abdullah, S., & Fong, M. (2021). GNSS signal strength mapping in tropical cities: A Malaysian perspective. IEEE Transactions on Instrumentation and Measurement, 70, 1–10. https://doi.org/10.1109/TIM.2021.3086784

Ritchie, S., & Dempsey, D. (2023). Comparative evaluation of GNSS performance in dense urban canyons. Navigation: Journal of the Institute of Navigation, 70(1), 189–201. https://doi.org/10.33012/navi.562

Ruskone, R., Liu, Z., & Chen, T. (2021). Advances in mobile satellite system modeling under interference. IEEE Transactions on Aerospace and Electronic Systems, 57(6), 4301–4315. https://doi.org/10.1109/TAES.2021.3100462

Singh, P. (2021). Ionospheric scintillation and its effects on GNSS performance in equatorial regions. Radio Science, 56(4), e2020RS007217. https://doi.org/10.1029/2020RS007217

Ulaganathan, S., & Kumar, S. (2024). Machine learning-based SNR prediction for adaptive mobile satellite communication. IEEE Access, 12, 115274–115285. https://doi.org/10.1109/ACCESS.2024.3358129

Valkama, M., & Ristaniemi, T. (2021). Challenges of GNSS signal tracking under multipath and scintillation. IEEE Transactions on Aerospace and Electronic Systems, 57(3), 2330–2342. https://doi.org/10.1109/TAES.2021.3065187

Wang, P., & Zhang, Y. (2019). Urban effects on GPS signal reliability: Measurement and modeling. GPS Solutions, 23(4), 96. https://doi.org/10.1007/s10291-019-0896-3

Wang, R., Lin, Y., & Zhao, L. (2021). Tropical foliage effects on GNSS signal degradation. Remote Sensing Letters, 12(9), 949–958. https://doi.org/10.1080/2150704X.2021.1947907

Wang, X., Zhao, J., & Li, F. (2022). Advanced receiver architectures for improved satellite tracking. IEEE Transactions on Aerospace and Electronic Systems, 58(5), 4032–4045. https://doi.org/10.1109/TAES.2022.3171958

Yi, S., Zhang, C., & Wang, Q. (2021). Evaluating the efficiency of SBAS and DGPS integration for positioning accuracy. Sensors, 21(9), 3120. https://doi.org/10.3390/s21093120

Zand, H., & Asgarzadeh, M. (2020). Foliage attenuation effects on satellite communication performance in tropical environments. International Journal of Satellite Communications and Networking, 38(4), 441–453. https://doi.org/10.1002/sat.1332

Zeng, W. (2022). Urban morphology effects on GNSS positioning in equatorial zones. Sensors, 22(13), 4751. https://doi.org/10.3390/s22134751

Zeng, W., & Xiong, Y. (2021). Mitigation of urban GNSS signal degradation using multipath prediction models. IEEE Access, 9, 134587–134599. https://doi.org/10.1109/ACCESS.2021.3117202

Zhao, X., & Jiang, H. (2020). The influence of building density on GNSS signal propagation in urban areas. Measurement, 154, 107488. https://doi.org/10.1016/j.measurement.2019.107488

Zhou, J., & Zhan, W. (2021). Performance evaluation of GPS signals under tropical multipath conditions. Journal of Geodesy, 95(8), 91. https://doi.org/10.1007/s00190-021-01552-z

Zhou, J., & Zhan, W. (2022). Field evaluation of GPS performance using low-cost receivers in complex urban terrains. Measurement, 198, 111335. https://doi.org/10.1016/j.measurement.2022.111335

Downloads

Published

2025-12-29

How to Cite

Hasanuddin, Z. B., Fujisaki, K., & Sampebatu, L. (2025). Signal Characteristics of Land Mobile Satellites in Urban and Suburban Equatorial Regions: A Study of S/N Ratios in Fixed and Mobile Conditions. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 730–744. Retrieved from https://journal.yrpipku.com/index.php/jaets/article/view/8300