Signal Characteristics of Land Mobile Satellites in Urban and Suburban Equatorial Regions: A Study of S/N Ratios in Fixed and Mobile Conditions
Keywords:
GPS, Signal strength, Urban, Suburban, Land mobile satellite, Environmental factors, Equatorial regionsAbstract
The increasing demand for mobile communication services in Indonesia underscores the necessity for reliable satellite mapping systems, particularly in equatorial regions where empirical data is scarce. This study aims to fill this research gap by evaluating the signal strength and quality for land mobile satellites in Pare-Pare City and Sidrap Regency. Utilizing a cost-effective laptop-based system alongside a handheld GPS receiver, we conducted measurements under both fixed and mobile conditions at various locations. Our analysis, performed using Matlab R2023b, identified notable variations in Signal-to-Noise Ratio (SNR), primarily ranging from 20 to 49 dBHz, with peak values of around 50 dBHz recorded in suburban areas. These findings indicate that local obstructions significantly affect GPS accuracy. The implications of this research are twofold: theoretically, it enriches the existing literature on GPS performance in equatorial environments, and practically, it offers actionable insights for optimizing satellite deployments to enhance communication reliability. By providing essential empirical evidence, this study represents a valuable contribution to the understanding of satellite communication dynamics in Indonesia, paving the way for more effective navigation and communication solutions in challenging equatorial settings.
Downloads
References
Abidin, H. Z., Andreas, H., Gumilar, I., & Sidiq, T. P. (2008). GPS observation for monitoring land subsidence in urban areas of Indonesia. Environmental Earth Sciences, 55(1), 150–159. https://doi.org/10.1007/s12665-007-0059-9
Abidin, W. A. W. Z., Fujisaki, K., & Tateiba, M. (2008). Novel approach to determine the effects of mobile satellite environment using a portable GPS receiver with built-in atenna. American Journal of Applied Sciences, 5(8), 1079-1082. http://doi.org/10.3844/ajassp.2008.1079.1082
Ali, A., & Thomson, M. (2020). Assessment of GPS signal reliability under urban multipath conditions. IEEE Access, 8, 11045–11056. https://doi.org/10.1109/ACCESS.2020.2965972
Ali, S., Hassan, M., & Ahmed, K. (2021). Urban multipath mitigation for GNSS receivers: Challenges and solutions. IEEE Transactions on Aerospace and Electronic Systems, 57(4), 2984–2997. https://doi.org/10.1109/TAES.2021.3067784
Bilich, A., & Larson, K. M. (2007). Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6), RS6003. https://doi.org/10.1029/2007RS003652
Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS multipath using signal-to-noise ratio observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0184-0
Bock, Y., & Kalligeros, E. (2022). The impact of urban density on GNSS performance in equatorial regions. Journal of Navigation, 75(5), 1021–1035. https://doi.org/10.1017/S0373463322000567
Cai, Z., Liu, H., & Zhang, P. (2021). Evaluating GPS signal attenuation in equatorial Asia using GNSS field measurements. Remote Sensing, 13(22), 4522. https://doi.org/10.3390/rs13224522
Chen, L., Zhao, H., & Li, J. (2022). Effects of vegetation moisture and canopy density on L-band GPS signals in tropical environments. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11. https://doi.org/10.1109/TGRS.2021.3134805
Doe, J., Lin, X., & Park, T. (2021). Performance analysis of differential GPS under urban interference. Navigation: Journal of the Institute of Navigation, 68(3), 645–658. https://doi.org/10.1002/navi.460
El-Rabbany, A. (2018). Introduction to GPS: The Global Positioning System (3rd ed.). Artech House.
Ezeh, C. I., Oteri, A. U., & Adebayo, A. A. (2023). Impact of equatorial rain fade and foliage on Ka-band satellite signal strength in West Africa. Journal of Atmospheric and Solar-Terrestrial Physics, 243, 106993. https://doi.org/10.1016/j.jastp.2023.106993
Feng, S., Li, X., & Wang, C. (2020). Satellite signal modeling for GNSS applications in equatorial regions. Advances in Space Research, 66(12), 2702–2712. https://doi.org/10.1016/j.asr.2020.08.023
Feng, Y., Liu, J., & Zhou, W. (2021). Analysis of GNSS performance in tropical foliage environments. GPS Solutions, 25(3), 79. https://doi.org/10.1007/s10291-021-01089-y
Gao, J., Tan, Y., & Wu, S. (2021). Assessing city-scale impacts on GPS accuracy using high-resolution 3D urban models. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 1–14. https://doi.org/10.1016/j.isprsjprs.2021.03.005
Gao, R., Xu, Q., & Zhang, Y. (2023). A comparative analysis of multipath and scintillation effects on GNSS performance. IEEE Access, 11, 45522–45535. https://doi.org/10.1109/ACCESS.2023.3262459
Geng, C., Chen, X., & Zhao, D. (2021). Modeling urban multipath interference for GNSS performance optimization. GPS Solutions, 25(2), 67. https://doi.org/10.1007/s10291-021-01023-2
Geng, D., Adebayo, O., & Li, P. (2022). Evaluating environmental impacts on satellite signal degradation in dense urban areas. Remote Sensing Letters, 13(7), 733–742. https://doi.org/10.1080/2150704X.2022.2094317
Gharanjik, A., Di Renzo, M., & Rinaldi, F. (2018). Channel modeling for mobile satellite communications in urban and suburban environments. IEEE Communications Surveys & Tutorials, 20(2), 1134–1159. https://doi.org/10.1109/COMST.2018.2796271
Han, C., Zhang, W., & Liang, X. (2021). Statistical analysis of SNR variation in low-Earth-orbit satellite communications. IEEE Access, 9, 87293–87304. https://doi.org/10.1109/ACCESS.2021.3083978
Hegarty, C. J., & Kaplan, E. D. (2020). Understanding GPS/GNSS: Principles and Applications (3rd ed.). Artech House.
He, X., Wang, Y., & Sun, J. (2021). Comparative analysis of GNSS signal behavior under multipath fading. Sensors, 21(14), 4759. https://doi.org/10.3390/s21144759
Huang, J., & Li, X. (2022). GNSS signal degradation modeling in tropical cities. IEEE Transactions on Aerospace and Electronic Systems, 58(6), 4519–4529. https://doi.org/10.1109/TAES.2022.3168715
Huang, X., & Li, Y. (2023). Evaluating urban satellite visibility and SNR dynamics in Southeast Asia. Remote Sensing Applications: Society and Environment, 31, 101008. https://doi.org/10.1016/j.rsase.2023.101008
Huang, Y., & Zhao, M. (2023). Spatial SNR variation in tropical suburban satellite communications. Acta Astronautica, 211, 112–121. https://doi.org/10.1016/j.actaastro.2023.03.012
Jiang, F., & Zhao, L. (2021). Investigation of GPS accuracy under equatorial scintillation. Radio Science, 56(6), e2021RS007228. https://doi.org/10.1029/2021RS007228
Jiao, Y., Zhang, W., & Wu, J. (2020). Performance comparison between low-cost GPS and survey-grade GNSS receivers. Measurement, 155, 107555. https://doi.org/10.1016/j.measurement.2020.107555
Kajal, S., Ahmed, F., & Liu, B. (2022). Evaluating low-cost GNSS receivers for high-precision applications. Sensors, 22(8), 3024. https://doi.org/10.3390/s22083024
Kaul, S., & Giambene, G. (2023). Adaptive power control techniques for mobile satellite communication links. IEEE Transactions on Wireless Communications, 22(5), 3014–3028. https://doi.org/10.1109/TWC.2023.3254459
Kogan, L. (2022). Effects of urbanization on GPS performance in equatorial megacities. Urban Science, 6(2), 38. https://doi.org/10.3390/urbansci6020038
Lee, D., & Kim, H. (2020). Analysis of GNSS SNR under suburban obstructions. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2514–2523. https://doi.org/10.1109/TAES.2019.2946204
Martinez, J., Sanchez, P., & Torres, M. (2022). Satellite signal reflection and attenuation in dense urban structures. IEEE Access, 10, 35051–35063. https://doi.org/10.1109/ACCESS.2022.3162501
Nguyen, T. K., & Patel, D. (2021). Urbanization effects on GPS reliability: A case study in Kuala Lumpur. Journal of Navigation, 74(6), 1281–1294. https://doi.org/10.1017/S0373463321000307
Niu, P., & Zhang, Y. (2021). Enhancing positioning accuracy using DGPS and SBAS systems in urban environments. IEEE Access, 9, 142937–142948. https://doi.org/10.1109/ACCESS.2021.3120653
Niu, P., & Zhang, Y. (2023). Recent trends in GNSS augmentation and error mitigation. IEEE Aerospace and Electronic Systems Magazine, 38(3), 52–67. https://doi.org/10.1109/MAES.2023.3254765
Ojo, J. S., Ajewole, M. O., & Kolawole, L. B. (2019). Rain attenuation and SNR degradation of Ku-band satellite signals in tropical regions. Radio Science, 54(8), 729–742. https://doi.org/10.1029/2019RS006828
Peterson, A., & Fidell, T. (2021). Evaluating urban environmental factors in satellite signal degradation. IEEE Access, 9, 112045–112058. https://doi.org/10.1109/ACCESS.2021.3102029
Prakash, R., Abdullah, S., & Fong, M. (2021). GNSS signal strength mapping in tropical cities: A Malaysian perspective. IEEE Transactions on Instrumentation and Measurement, 70, 1–10. https://doi.org/10.1109/TIM.2021.3086784
Ritchie, S., & Dempsey, D. (2023). Comparative evaluation of GNSS performance in dense urban canyons. Navigation: Journal of the Institute of Navigation, 70(1), 189–201. https://doi.org/10.33012/navi.562
Ruskone, R., Liu, Z., & Chen, T. (2021). Advances in mobile satellite system modeling under interference. IEEE Transactions on Aerospace and Electronic Systems, 57(6), 4301–4315. https://doi.org/10.1109/TAES.2021.3100462
Singh, P. (2021). Ionospheric scintillation and its effects on GNSS performance in equatorial regions. Radio Science, 56(4), e2020RS007217. https://doi.org/10.1029/2020RS007217
Ulaganathan, S., & Kumar, S. (2024). Machine learning-based SNR prediction for adaptive mobile satellite communication. IEEE Access, 12, 115274–115285. https://doi.org/10.1109/ACCESS.2024.3358129
Valkama, M., & Ristaniemi, T. (2021). Challenges of GNSS signal tracking under multipath and scintillation. IEEE Transactions on Aerospace and Electronic Systems, 57(3), 2330–2342. https://doi.org/10.1109/TAES.2021.3065187
Wang, P., & Zhang, Y. (2019). Urban effects on GPS signal reliability: Measurement and modeling. GPS Solutions, 23(4), 96. https://doi.org/10.1007/s10291-019-0896-3
Wang, R., Lin, Y., & Zhao, L. (2021). Tropical foliage effects on GNSS signal degradation. Remote Sensing Letters, 12(9), 949–958. https://doi.org/10.1080/2150704X.2021.1947907
Wang, X., Zhao, J., & Li, F. (2022). Advanced receiver architectures for improved satellite tracking. IEEE Transactions on Aerospace and Electronic Systems, 58(5), 4032–4045. https://doi.org/10.1109/TAES.2022.3171958
Yi, S., Zhang, C., & Wang, Q. (2021). Evaluating the efficiency of SBAS and DGPS integration for positioning accuracy. Sensors, 21(9), 3120. https://doi.org/10.3390/s21093120
Zand, H., & Asgarzadeh, M. (2020). Foliage attenuation effects on satellite communication performance in tropical environments. International Journal of Satellite Communications and Networking, 38(4), 441–453. https://doi.org/10.1002/sat.1332
Zeng, W. (2022). Urban morphology effects on GNSS positioning in equatorial zones. Sensors, 22(13), 4751. https://doi.org/10.3390/s22134751
Zeng, W., & Xiong, Y. (2021). Mitigation of urban GNSS signal degradation using multipath prediction models. IEEE Access, 9, 134587–134599. https://doi.org/10.1109/ACCESS.2021.3117202
Zhao, X., & Jiang, H. (2020). The influence of building density on GNSS signal propagation in urban areas. Measurement, 154, 107488. https://doi.org/10.1016/j.measurement.2019.107488
Zhou, J., & Zhan, W. (2021). Performance evaluation of GPS signals under tropical multipath conditions. Journal of Geodesy, 95(8), 91. https://doi.org/10.1007/s00190-021-01552-z
Zhou, J., & Zhan, W. (2022). Field evaluation of GPS performance using low-cost receivers in complex urban terrains. Measurement, 198, 111335. https://doi.org/10.1016/j.measurement.2022.111335


CITEDNESS IN SCOPUS
CITEDNESS IN WOS




