Implementation of Data Mining Using K-Means Clustering Method to Determine Sales Strategy In S&R Baby Store

Authors

  • Tri Wahyudi STIKOM Cipta Karya Informatika
  • Titi Silfia STIKOM CKI

DOI:

https://doi.org/10.37385/jaets.v4i1.913

Keywords:

Data mining, CRISP-DM, K-Means Algorithm, Sales Strategy

Abstract

The S&R Baby Store store is a Small and Medium Enterprise (SME) that is engaged in baby equipment, but there is a lot of competition between small and medium enterprises (SMEs) who are engaged in the same field, so that many products sold are of course not all sold out, some are lacking. in demand. Therefore the S&R Baby Store store needs a good sales strategy in order to increase sales profit. This study discusses the application of data mining, using the K-Means Clustering algorithm with the CRISP-DM method. Implementation using RapidMiner 9.10 which is done by entering sales transaction data with a total of 4 attributes and forming 4 clusters consisting of very in demand, in demand, moderate in demand and less in demand. the second cluster with 944 products, the third cluster with 2 products, and the fourth cluster with 43 products. The results of the cluster above are the products sold are the best-selling product categories, then the results of the cluster are validated using the Davies-Bouldin Index with a DBI value generated from clustering of 0.560.

Downloads

Download data is not yet available.

References

Annur, H. (2019). Penerapan Data Mining Menentukan Strategi Penjualan Variasi Mobil Menggunakan Metode K-Means Clustering. Jurnal Informatika Upgris, 5(1).

Ashari, I. F., Banjarnahor, R., Farida, D. R., Aisyah, S. P., Dewi, A. P., & Humaya, N. (2022). Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies. Journal of Applied Informatics and Computing, 6(1), 07-15.

Bahar, A., Pramono, B., & Sagala, L. H. S. (2016). Penentuan Strategi Penjualan Alat-Alat Tattoo di Studio Sonyxtattoo Menggunakan Metode K-Means Clustering. Seman TIK, 2(2).

Borlea, I. D., Precup, R. E., Borlea, A. B., & Iercan, D. (2021). A unified form of fuzzy C-means and K-means algorithms and its partitional implementation. Knowledge-Based Systems, 214, 106731.

Bramasta, F. A., & Halilintar, R. (2021, August). Penerapan Data Mining Untuk Menentukan Strategi Penjualan Toko Sepatu. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 5, No. 2, pp. 236-241).

Cartwright, S., Liu, H., & Raddats, C. (2021). Strategic use of social media within business-to-business (B2B) marketing: A systematic literature review. Industrial Marketing Management, 97, 35-58.

Handoko, S., Fauziah, F., & Handayani, ETE (2020). Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi dan Rekayasa, 25(1), 76–88. https://doi.org/10.35760/tr.2020.v25i1.267

Hertina, H., Nurwahid, M., Haswir, H., Sayuti, H., Darwis, A., Rahman, M., ... & Hamzah, M. L. (2021). Data mining applied about polygamy using sentiment analysis on Twitters in Indonesian perception. Bulletin of Electrical Engineering and Informatics, 10(4), 2231-2236.

Indriyani, F., & Irfiani, E. (2019). Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika, 7(2), 109-113.

Muttaqin, M. R., Hermanto, T. I., & Sunandar, M. A. (2022). Penerapan K-Means Clustering dan Cross-Industry Standard Process For Data Mining (CRISP-DM) untuk Mengelompokan Penjualan Kue. KOMPUTASI, 19(1), 38-53.

Pambudi, W. T., & Witanti, A. (2022). Penerapan Algoritma K-Means Untuk Menganalisis Data Penjualan Pada Toko Ayu Collection Berasis Web. Jurnal Sistem Informasi dan Bisnis Cerdas, 15(1), 1-9.

Rezaee, M. J., Eshkevari, M., Saberi, M., & Hussain, O. (2021). GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game. Knowledge-Based Systems, 213, 106672.

Saltz, J. S. (2021, December). CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 2337-2344). IEEE.

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526-534.

Setyowati, W., Widayanti, R., & Supriyanti, D. (2021). Implementation Of E-Business Information System In Indonesia: Prospects And Challenges. International Journal of Cyber and IT Service Management, 1(2), 180-188.

Triyandana, G., Putri, L. A., & Umaidah, Y. (2022). Penerapan Data Mining Pengelompokan Menu Makanan dan Minuman Berdasarkan Tingkat Penjualan Menggunakan Metode K-Means. Journal of Applied Informatics and Computing, 6(1), 40-46.

Turnip, H. N., & Fahmi, H. (2021). Penerapan Data Mining Pada Penjualan Kartu Paket Internet Yang Banyak Diminati Konsumen Dengan Metode K-Means. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 4(2), 36-41.

Wijaya, Y. A., Kurniady, D. A., Setyanto, E., Tarihoran, W. S., Rusmana, D., & Rahim, R. (2021). Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities. TEM J, 10(3), 1099-1103.

Downloads

Published

2022-09-02

How to Cite

Wahyudi, T., & Silfia, T. (2022). Implementation of Data Mining Using K-Means Clustering Method to Determine Sales Strategy In S&R Baby Store. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 93–103. https://doi.org/10.37385/jaets.v4i1.913