Detection of The Deaf Signal Language Using The Single Shot Detection (SSD) Method


  • Dadang Mulyana Iskandar STIKOM Cipta Karya Informatika
  • Mesra Betty Yel STIKOM Cipta Karya Informatika
  • Aldi Sitohang STIKOM Cipta Karya Informatika



Detection, Sign Language, SSD, Google Collaboratory


Sign Language is a language that prioritizes manual communication, body language, and lip movements, instead of sound, to communicate. Deaf people are the main group who use this language, usually by combining hand shape, orientation and movement of the hands, arms, and body, and facial expressions to express their thoughts. Therefore, the researcher created an image recognition program in sign language using the Single Shot Detection (SSD) method, which is a convolution activity by combining several layers of preparation, by utilizing several components that move together and are motivated by a biological sensory system. The letters used in making sign language programs use the letters of the alphabet (az). This sign language detection programming that runs on the Google Collaboratory application


Download data is not yet available.


Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability, 14(6), 3387.

Abu-Jamie, T. N., & Abu-Naser, S. S. (2022). Classification of Sign-language Using VGG16. International Journal of Academic Engineering Research (IJAER), 6(6).

Aditama, P. W., Anggara, I. G. A. S., & Jayanegara, I. N. (2022). Implementation of Sibi And Bisindo Letters Recognition Using Augmented Reality During Pandemic. IJISTECH (International Journal of Information System and Technology), 5(5), 602-611.

Agarwal, H., & Raj, V. J. P. (2022). Adoption of Human Resource Analytics in Information Technology and Information Technology Enabled Services Industry in India. Journal of Data Science, Informetrics, and Citation Studies, 1(1), 50-57.

Bahar, A. Y., Shorman, S. M., Khder, M. A., Quadir, A. M., & Almosawi, S. A. (2022, June). Survey on Features and Comparisons of Programming Languages (PYTHON, JAVA, AND C#). In 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 154-163). IEEE.

Chandel, S., Clement, C. B., Serrato, G., & Sundaresan, N. (2022). Training and evaluating a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901.

Chen, Y., Wei, F., Sun, X., Wu, Z., & Lin, S. (2022). A simple multi-modality transfer learning baseline for sign language translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5120-5130).

Cox, R., Griesemer, R., Pike, R., Taylor, I. L., & Thompson, K. (2022). The Go programming language and environment. Communications of the ACM, 65(5), 70-78.

Gupta, A. M., Koltharkar, S. S., Patel, H. D., & Naik, S. (2022, March). DRISHYAM: An Interpreter for Deaf and Mute using Single Shot Detector Model. In 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 365-371). IEEE.

Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N. C., Niyato, D., ... & Guizani, M. (2021). Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(4), 2802-2832.

Hosea, W. K., & Wirawan, I. (2022). The Impact of Implementing the Gamification Method in Learning Indonesian Sign Language with Bisindo Vocabulary. International Journal of Open Information Technologies, 10(9), 62-69.

Leqi, L., Huang, A., Lipton, Z., & Azizzadenesheli, K. (2022, June). Supervised Learning with General Risk Functionals. In International Conference on Machine Learning (pp. 12570-12592). PMLR.

Magalhães, S. A., Castro, L., Moreira, G., Dos Santos, F. N., Cunha, M., Dias, J., & Moreira, A. P. (2021). Evaluating the single-shot multibox detector and YOLO deep learning models for the detection of tomatoes in a greenhouse. Sensors, 21(10), 3569.

Nithin, A., & Jaisharma, K. (2022, February). A Deep Learning Based Novel Approach for Detection of Face Mask Wearing using Enhanced Single Shot Detector (SSD) over Convolutional Neural Network (CNN) with Improved Accuracy. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-5). IEEE.

Nurpiena, S. A., Wihidayat, E. S., & Budianto, A. (2021). Developing Indonesia Sign Language (BISINDO) Application with Android Based for Learning Sign Language. Journal of Informatics and Vocational Education, 4(1).

Sampathila, N., Chadaga, K., Goswami, N., Chadaga, R. P., Pandya, M., Prabhu, S., ... & Upadya, S. P. (2022, September). Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. In Healthcare (Vol. 10, No. 10, p. 1812). MDPI.

Sujatha, M., Priya, N., Beno, A., Blesslin Sheeba, T., Manikandan, M., Tresa, I. M., ... & Thimothy, S. P. (2022). IoT and Machine Learning-Based Smart Automation System for Industry 4.0 Using Robotics and Sensors. Journal of Nanomaterials.




How to Cite

Iskandar, D. M. ., Yel, M. B., & Sitohang, A. (2022). Detection of The Deaf Signal Language Using The Single Shot Detection (SSD) Method. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 215–222.