Sign Language Detection System Using Adaptive Neuro Fuzzy Inference System (ANFIS) Method


  • Dadang Mulyana Iskandar STIKOM Cipta Karya Informatika
  • Mesra Betty Yel STIKOM Cipta Karya Informatika
  • Eka Maheswara STIKOM CKI



ANFIS, Object Detection, Sign Language


Sign language is a language that prioritizes communication with hands, body language, and lip movements to communicate. The deaf are the main group who use this language, often combining hand shape, hand, arm and body orientation and movement, and facial expressions to express their thoughts. The sign language detection system is designed using the Adaptive Neuro Fuzzy Inference System (ANFIS). This study uses data from the dataset, which is a site that provides research data on artificial intelligence. This study was conducted to recognize empty hand signals. Where it will help users naturally without any additional help. The test is carried out using a data set as evidenced by 1 display. In this process, The characteristics of the hand were carried out using the Histogram Oriented Gradient (HOG) method. Meanwhile, to separate it from the background image, it is used with color segmentation. The results of the process are then taken for classification. The classification process uses the Adaptive Neuro Fuzzy Inference System method. The results of the tests carried out for accuracy are as much as


Download data is not yet available.


Aditya, W., Shih, T. K., Thaipisutikul, T., Fitriajie, A. S., Gochoo, M., Utaminingrum, F., & Lin, C. Y. (2022). Novel Spatio-Temporal Continuous Sign Language Recognition Using an Attentive Multi-Feature Network. Sensors, 22(17), 6452.

Amara, K., Fekik, A., Hocine, D., Bakir, M. L., Bourennane, E. B., Malek, T. A., & Malek, A. (2018, October). Improved performance of a PV solar panel with adaptive neuro fuzzy inference system ANFIS based MPPT. In 2018 7th international conference on renewable energy research and applications (ICRERA) (pp. 1098-1101). IEEE.

Andrian, M. Y., Purwanto, D., & Mardiyanto, R. (2017). Penerjemahan bahasa isyarat indonesia menggunakan kamera pada telepon genggam android (Doctoral dissertation, Sepuluh Nopember Institute of Technology).

A Annisa, A., Hiron, N., & Anshary, M. A. K. (2017). Rancang Bangun Aplikasi Konversi Bahasa Isyarat Ke Abjad dan Angka Berbasis Augmented Reality dengan Teknik 3D Object Tracking. Jurnal Online Informatika, 2(1), 25-29.

Bakti, M. B. S., & Pranoto, Y. M. (2019). Pengenalan Angka Sistem Isyarat Bahasa Indonesia Dengan Menggunakan Metode Convolutional Neural Network. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 3, No. 1, pp. 011-016).

Borman, R. I., & Priyopradono, B. (2018). Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA). Jurnal Informatika: Jurnal Pengembangan IT, 3(1), 103-108.

Borman, R. I., Priopradono, B., & Syah, A. R. (2019, June). Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo). In SNIA (Seminar Nasional Informatika dan Aplikasinya) (Vol. 3, pp. D-1).

Elakkiya, R. (2021). Machine learning based sign language recognition: a review and its research frontier. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7205-7224.

Fajriani, R. N., Asriani, F., & Susilawati, H. (2018, October). Penerapan Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Pemantauan Status Gunung Merapi. In Seminar Multimedia & Artificial Intelligence (Vol. 1, pp. 140-150).

Hou, Y., Li, Q., Zhang, C., Lu, G., Ye, Z., Chen, Y., ... & Cao, D. (2021). The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering, 7(6), 845-856.

Isabona, J., & Ojuh, D. O. (2021). Machine learning based on kernel function controlled gaussian process regression method for in-depth extrapolative analysis of Covid-19 daily cases drift rates. Int. J. Math. Sci. Comput.(IJMSC), 7(2), 14-23.

Lazuardi, M., Raharjo, T., Hardian, B., & Simanungkalit, T. (2021, November). Perceived Benefits of DevOps Implementation in Organization: A Systematic Literature Review. In 2021 10th International Conference on Software and Information Engineering (ICSIE) (pp. 10-16).

Liu, Y., Sun, P., Wergeles, N., & Shang, Y. (2021). A survey and performance evaluation of deep learning methods for small object detection. Expert Systems with Applications, 172, 114602.

Rastgoo, R., Kiani, K., & Escalera, S. (2021). Sign language recognition: A deep survey. Expert Systems with Applications, 164, 113794.

Slonimska, A., Özyürek, A., & Capirci, O. (2022). Simultaneity as an emergent property of efficient communication in language: A comparison of silent gesture and sign language. Cognitive Science, 46(5), e13133.

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M., & Lee, B. (2022). A survey of modern deep learning based object detection models. Digital Signal Processing, 103514.

Zheng, J., Cole, T., Zhang, Y., Kim, J., & Tang, S. Y. (2021). Exploiting machine learning for bestowing intelligence to microfluidics. Biosensors and Bioelectronics, 194, 113666.




How to Cite

Iskandar, . D. M., Yel, M. B., & Maheswara, E. (2022). Sign Language Detection System Using Adaptive Neuro Fuzzy Inference System (ANFIS) Method. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 158–167.