Comparison of Various Sky Model for Daylighting Availability Inside The Classroom with Bilateral Opening Typology in The Tropics

Authors

  • Atthaillah Atthaillah Universitas Malikussaleh
  • Muhammad Iqbal Universitas Malikussaleh
  • Badriana Badriana Universitas Malikussaleh
  • Putri Sri Alisia Nabila Universitas Malikussaleh

DOI:

https://doi.org/10.37385/jaets.v7i1.6204

Keywords:

Daylighting, Sky model, Classroom, Bilateral opening, Tropics

Abstract

This study compares daylighting performance under four sky models of a classroom in tropical climates to understand the differences in illuminance and uniformity values. This research is significant as it can inform the relevance of the widely used static metric, such as the daylight factor, for daylight performance evaluation in tropical climates in comparison with the climate-based sky model which is utilized for dynamic metric calculation. Computational simulation was employed to achieve the objective. Grasshopper-Rhinoceros was utilized for the classroom model, while Radiance was employed for sky modelling and daylight simulation. The results indicated that static sky models exhibited greater discrepancies in their average illuminance and uniformity values compared to climate-based or dynamic sky models. The pervasive utilization of static metrics, such as the daylight factor, for evaluating daylighting performance within a space may necessitate reconsideration in tropical climates, given the higher error rates observed in this study for a classroom with bilateral opening design.

Downloads

Download data is not yet available.

References

Abdelhakim, M., Lim, Y. W., & Kandar, M. Z. (2019). Optimum glazing configurations for visual performance in Algerian classrooms under mediterranean climate. Journal of Daylighting, 6(1), 11–22. https://doi.org/https://doi.org/10.15627/jd.2019.2

Acosta, I., Muñoz, C., Esquivias, P., Moreno, D., & Navarro, J. (2015). Analysis of the accuracy of the sky component calculation in daylighting simulation programs. Solar Energy, 119, 54–67. https://doi.org/https://doi.org/10.1016/j.solener.2015.06.022

Acosta, I., Navarro, J., & Sendra, J. J. (2014). Lighting design in courtyards: Predictive method of daylight factors under overcast sky conditions. Renewable Energy, 71, 243–254. https://doi.org/https://doi.org/10.1016/j.renene.2014.05.020

Aghimien, E. I., & Li, D. H. W. (2022). Application of luminous efficacies for daylight illuminance data generation in subtropical Hong Kong. Smart and Sustainable Built Environment, 11(2), 271–293. https://doi.org/10.1108/SASBE-08-2021-0146

Ahmad, A., Prakash, O., Kumar, A., Mozammil Hasnain, S. M., Verma, P., Zare, A., Dwivedi, G., & Pandey, A. (2022). Dynamic analysis of daylight factor, thermal comfort and energy performance under clear sky conditions for building: An experimental validation. Materials Science for Energy Technologies, 5, 52–65. https://doi.org/https://doi.org/10.1016/j.mset.2021.11.003

Alshaibani, K., & Li, D. (2021). Sky type classification for the ISO/CIE Standard General Skies: a proposal for a new approach. International Journal of Low-Carbon Technologies, 16(3), 921–926. https://doi.org/10.1093/ijlct/ctab020

Atthaillah, A., Mangkuto, R. A., Subramaniam, S., & Yuliarto, B. (2024a). Daylighting design validation and optimisation of tropical school classrooms with asymmetrical bilateral opening typology. Indoor and Built Environment, 33(3), 1420326X231204513. https://doi.org/10.1177/1420326X231204513

Atthaillah, Mangkuto, R. A., Koerniawan, M. D., Subramaniam, S., & Yuliarto, B. (2024b). Formulation of climate-based daylighting design prediction model for high performance tropical school classrooms. Energy and Buildings, 113849. https://doi.org/https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113849

Atthaillah, Mangkuto, R. A., Koerniawan, M. D., & Yuliarto, B. (2022a). On the Interaction between the Depth and Elevation of External Shading Devices in Tropical Daylit Classrooms with Symmetrical Bilateral Openings. Buildings, 12(6). https://doi.org/10.3390/buildings12060818

Atthaillah, Mangkuto, R. A., Koerniawan, M. D., & Yuliarto, B. (2022b). Optimization of daylighting design using self-shading mechanism in tropical school classrooms with bilateral openings. Journal of Daylighting, 9(2), 117–136. https://doi.org/https://doi.org/https://dx.doi.org/10.15627/jd.2022.10

Ayoub, M. (2019). 100 Years of daylighting: A chronological review of daylight prediction and calculation methods. Solar Energy, 194, 360–390. https://doi.org/https://doi.org/10.1016/j.solener.2019.10.072

Badan Standardisasi Nasional (BSN). (2001). SNI 03-2396-2001: Tata cara perancangan sistem pencahayaan alami pada bangunan gedung.

Bahdad, A. A. S., Fadzil, S. F. S., Onubi, H. O., & BenLasod, S. A. (2021). Sensitivity analysis linked to multi-objective optimization for adjustments of light-shelves design parameters in response to visual comfort and thermal energy performance. Journal of Building Engineering, 44, 102996. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102996

Bahdad, A. A. S., Fadzil, S. F. S., & Taib, N. (2020). Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of Malaysia. Journal of Daylighting, 7(1), 122–136. https://doi.org/10.15627/jd.2020.10

Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6, 1590–1607. https://doi.org/https://doi.org/10.1016/j.egyr.2020.06.008

Bian, Y., Chen, Y., Sun, Y., Ma, Y., Yu, D., & Leng, T. (2023). Simulation of daylight availability, visual comfort and view clarity for a novel window system with switchable blinds in classrooms. Building and Environment, 235, 110243. https://doi.org/https://doi.org/10.1016/J.BUILDENV.2023.110243

Brembilla, E., & Mardaljevic, J. (2019). Climate-Based Daylight Modelling for compliance verification: Benchmarking multiple state-of-the-art methods. Building and Environment, 158, 151–164. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.04.051

Callejas, L., Pereira, L., Reyes, A., Torres, P., & Piderit, B. (2020). Optimization of natural lighting design for visual comfort in modular classrooms: Temuco case. SBE: Urban Planning, Global Problems, Local Policies, 012007. https://doi.org/10.1088/1755-1315/503/1/012007

Diakite-Kortlever, A. K., & Knoop, M. (2021). Forecast accuracy of existing luminance-related spectral sky models and their practical implications for the assessment of the non-image-forming effectiveness of daylight. Lighting Research & Technology, 53(7), 657–676. https://doi.org/10.1177/1477153520982265

Dieste-Velasco, M. I., García-Ruiz, I., González-Peña, D., & Alonso-Tristán, C. (2024). Two new models of direct luminous efficacy under clear sky conditions for daylighting in Burgos, Spain. Renewable Energy, 231, 120926. https://doi.org/https://doi.org/10.1016/j.renene.2024.120926

Dolnikova, E., Katunsky, D., Vertal, M., & Zozulak, M. (2020). Influence of roof windows area changes on the classroom indoor climate in the attic space: a case study. Sustainability, 12(12), 5046. https://doi.org/10.3390/su12125046

Effendy, E. J., Hakim, F. N., Atthaillah, Mangkuto, R. A., Koerniawan, M. D., & Ramadhani, D. (2023). Daylight optimization in a hypothetical classroom using single-objective optimization methods: Case study in Lhokseumawe, Indonesia. IOP Conference Series: Earth and Environmental Science, 1157(1), 12002. https://doi.org/10.1088/1755-1315/1157/1/012002

Fan, Z., Zehui Yang, & Liu Yang. (2021). Daylight performance assessment of atrium skylight with integrated semi-transparent photovoltaic for different climate zones in China. Building and Environment, 190, 107299. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.107299

García-Rodríguez, A., Granados-López, D., García-Rodríguez, S., Díez-Mediavilla, M., & Alonso-Tristán, C. (2021). Modelling Photosynthetic Active Radiation (PAR) through meteorological indices under all sky conditions. Agricultural and Forest Meteorology, 310, 108627. https://doi.org/https://doi.org/10.1016/j.agrformet.2021.108627

Geisler-Moroder, D., Lee, E. S., & Ward, G. J. (2017). Validation of the five-phase method for simulating complex fenestration systems with radiance against field measurements. Proceedings for the 15th International Conference of the International Building Performance Simulation Association.

Hakim, F. N., Atthaillah, A., & Mangkuto, R. A. (2021a). Usulan pembaruan tabel faktor langit pada sni 03-2396-2001 tentang pencahayaan alami pada bangunan. Jurnal Permukiman.

Hakim, F. N., Muhamadinah, Y., Atthaillah, Mangkuto, R. A., & Sudarsono, A. S. (2021b). Building Envelope Design Optimization of a Hypothetical Classroom Considering Energy Consumption, Daylighting, and Thermal Comfort: Case Study in Lhokseumawe, Indonesia. International Journal of Technology, 12(6), 1217–1227. https://doi.org/https://doi.org/10.14716/ijtech.v12i6.5203

ESNA. (2012). IES LM-83-12 Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE).

Kementerian Pendidikan Nasional RI. (2011). Peraturan Menteri Pendidikan Nasional No 32 Tahun 2011 Lampiran II: Standar dan Spesifikasi Teknis Rehabilitasi Ruang Kelas Rusak, Pembangunan Ruang Kelas Baru Beserta Perabotnya, dan Pembangunan Ruang Perpustakaan Beserta Perabotnya untuk SD/SDLB. Kementerian Pendidikan Nasional.

Kharvari, F. (2020). An empirical validation of daylighting tools: Assessing radiance parameters and simulation settings in Ladybug and Honeybee against field measurements. Solar Energy, 207, 1021–1036. https://doi.org/https://doi.org/https://doi.org/10.1016/j.solener.2020.07.054

Khidmat, R. P., Fukuda, H., Kustiani, Paramita, B., Qingsong, M., & Hariyadi, A. (2022). Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. Journal of Building Engineering, 51, 104241. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104241

Kittler, R. (1967). Standardization of outdoor conditions for the calculation of daylight factor with clear skies. Proceedings of the CIE International Conference on Sunlight in Buildings, 273–285.

Korsavi, S. S., Zomorodian, Z. S., & Tahsildoost, M. (2016). Visual comfort assessment of daylit and sunlit areas: A longitudinal field survey in classrooms in Kashan, Iran. Energy and Buildings, 128, 305–318. https://doi.org/https://doi.org/https://doi.org/10.1016/j.enbuild.2016.06.091

Lou, S., Huang, Y., Li, D. H. W., Xia, D., Zhou, X., & Zhao, Y. (2021). Optimizing the beam and sky diffuse radiation calculations under random obstructions of urban environments. Building and Environment, 196, 107806. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107806

Mangkuto, R. A. (2016). Akurasi perhitungan faktor langit dalam SNI 03-2396-2001 tentang pencahayaan alami pada bangunan gedung. Jurnal Permukiman, 11(2), 110–115.

Mangkuto, R. A., Atthaillah, Koerniawan, M. D., & Yuliarto, B. (2021). Theoretical Impact of Building Facade Thickness on Daylight Metrics and Lighting Energy Demand in Buildings: A Case Study of the Tropics. Buildings, 11(12), 656. https://doi.org/10.3390/buildings11120656

Mardaljevic, J. (1995). Validation of a lighting simulation program under real sky conditions. Lighting Research & Technology, 27(4), 181–188.

Mardaljevic, J. (2000). Daylight simulation: validation, sky models and daylight coefficients. In De Montfort University, UK. De Montfort University, UK.

Mardaljevic, J. (2010). Climate-Based Daylight Analysis for Residential Buildings Impact of various window configurations , external obstructions , orientations and location on useful daylight illuminance.

Mardaljevic, J. (2021). The implementation of natural lighting for human health from a planning perspective. Lighting Research & Technology, 53(5), 489–513. https://doi.org/10.1177/14771535211022145

McNeil, A., & Lee, E. S. (2012). A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. Journal of Building Performance Simulation, 6(1), 24–37. https://doi.org/10.1080/19401493.2012.671852

Mendyl, A., Mabasa, B., Bouzghiba, H., & Weidinger, T. (2023). Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. Applied Sciences, 13(1). https://doi.org/10.3390/app13010320

Moon, P., & Spencer, D. . (1947). Illumination from a non-uniform sky. Trans Illum Eng Soc, 37:707-26.

Moreno, M. B. P., & Labarca, C. Y. Y. (2015). Methodology for assessing daylighting design strategies in classroom with a climate-based method. Sustainability (Switzerland), 7(1), 880–897. https://doi.org/https://doi.org/10.3390/su7010880

Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminances: a new paradigm for assessing daylight in building. Lighting Research and Technology. https://doi.org/10.1191/1365782805li128oa

Nasrollahi, N., & Shokry, E. (2020). Parametric analysis of architectural elements on daylight, visual comfort, and electrical energy performance in the study spaces. Journal of Daylighting, 7(1), 57–72. https://doi.org/https://doi.org/10.15627/jd.2020.5

Pellegrino, A., Cammarano, S., & Savio, V. (2015). Daylighting for Green Schools: A Resource for Indoor Quality and Energy Efficiency in Educational Environments. Energy Procedia, 78, 3162–3167. https://doi.org/https://doi.org/https://doi.org/10.1016/j.egypro.2015.11.774

Perez, R., Seals, R., & Michalsky, J. (1993). All-weather model for sky luminance distribution—preliminary configuration and validation. Solar energy, 50(3), 235-245.

Reinhart, C. F. (2011). Daylight performance predictions. In J. L. M. Hensen & R. Lambert (Eds.), Building Performance Simulation for Design and Operation (pp. 235–276). Spon Press.

Reinhart, C. F., & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 33(7), 683–697. https://doi.org/10.1016/S0378-7788(01)00058-5

Robert McNeel & Associates. (2019). Rhinoceros. https://www.rhino3d.com/searchresults?q=rhinoceros+is

Roudsari, M. S., & Pak, M. (2013). Ladybug: A Parametric Environmental Plugin For Grasshopper to Help Designers Create An Environmentally-Conscious Design. 13th Conference of International Building Performance Simulation Association, 3128–3135.

Salma, R. F., Prasojo, Y., Mangkuto, R. A., Koerniawan, M. D., & Atthaillah. (2023). Design optimization of atrium, skylight, and façade design for daylighting performance in tropical office buildings using k-Nearest Neighbour classifier and Pareto frontiers. Building Simulation Conference Proceedings, 18, 1997 – 2004. https://doi.org/10.26868/25222708.2023.1433

Samiou, A. I., Doulos, L. T., & Zerefos, S. (2022). Daylighting and artificial lighting criteria that promote performance and optical comfort in preschool classrooms. Energy and Buildings, 258, 111819. https://doi.org/10.1016/J.ENBUILD.2021.111819

Subramaniam, S. (2017). Daylighting Simulations with Radiance using Matrix-based Methods. https://www.radiance-online.org/learning/tutorials/matrix-based-methods

Subramaniam, S., & Mistrick, R. G. (2017). A More Accurate Approach for calculating Illuminance with Daylight Coefficients. The IES Annual Conference 2017.

Sun, C., Qi, X., & Han, Y. (2021). Seasonal characteristics of CIE standard sky types in northeast China. Solar Energy, 220, 152–162. https://doi.org/https://doi.org/10.1016/j.solener.2021.03.015

Syahreza, R. N., Husini, E. M., Arabi, F., Ismail, W. N. W., & Kandar, M. Z. (2018). Secondary school classrooms daylighting evaluation in Negeri Sembilan, Malaysia. IOP Conf. Series: Materials Science and Engineering 401, 012024. https://doi.org/10.1088/1757-899X/401/1/012024

Tregenza, P., & Waters, I. (1983). Daylight coefficients. Lighting Research & Technology, 15(2), 65–71.

United States Green Building Council (USGBC). (2013). LEED Reference Guide for Building Design and Construction, LEED v4.

United States Green Building Council (USGBC). (2021). LEED v4.1: Building Design and Construction. https://www.usgbc.org/leed/v41

Ward, G. J., Wang, T., Geisler-Moroder, D., Lee, E. S., Grobe, L. O., Wienold, J., & Jonsson, J. C. (2021). Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Building and Environment, 196, 107774. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107774

Ward, G., & Rubinstein, F. (1988). A New Technique for Computer Simulation of Illuminated Spaces. Journal of the Illuminating Engineering Society, 17(1).

Yamauti, Z. (1924). Geometrical calculation of illumination. Electrotech. Lab. Tokyo. Res., 148.

Downloads

Published

2025-12-29

How to Cite

Atthaillah, A., Iqbal, M., Badriana, B., & Nabila, P. S. A. (2025). Comparison of Various Sky Model for Daylighting Availability Inside The Classroom with Bilateral Opening Typology in The Tropics. Journal of Applied Engineering and Technological Science (JAETS), 7(1), 22–36. https://doi.org/10.37385/jaets.v7i1.6204