Analisis Determinan Dan Anteseden Penggunaan Quick Response Indonesian Standard (QRIS) Pada Pembayaran Digital

Authors

  • Yd Ferdian Eka Saputra Universitas Andalas
  • Asniati Bahari Universitas Andalas

DOI:

https://doi.org/10.37385/msej.v5i1.4428

Keywords:

Mobile Technology Acceptance Model, behavioral intention, QRIS

Abstract

Perkembangan teknologi telah menghadirkan berbagai kemudahan, termasuk dalam lingkungan bisnis. Salah satu kontribusinya adalah hadirnya metode pembayaran non tunai menggunakan kode QR. Pemerintah Indonesia bekerjasama dengan bank dan penyedia jasa sistem pembayaran telah membuat standar pembayaran kode QR yang disebut QRIS. Pemberlakuan QRIS ini juga merupakan salah satu upaya percepatan digitalisasi sistem pembayaran di Indonesia. Keberhasilan adopsi QRIS ini sangat bergantung pada kesiapan pengguna untuk menerima sistem baru yang tercermin dalam niat perilaku pengguna. Salah satu teori yang dapat menjelaskan tentang niat perilaku pengguna adalah Mobile Technology Acceptance Model. Tujuan penelitian ini adalah untuk menganalisis determinan dan anteseden penggunaan QRIS pada pembayaran digital. Penelitian ini menggunakan metode pengumpulan data melalui kuesioner secara insidental yang melibatkan 94 responden. Penelitian menggunakan uji Structural Equation Modeling (SEM) untuk pengujian hipotesis. Hasil penelitian menunjukkan bahwa mobile ease of use, trust, dan anxiety memiliki pengaruh yang signifikan terhadap behavioral intention pengguna QRIS. Sementara itu mobile usefulness, optimism, dan personal innovativeness tidak berpengaruh signifikan terhadap behavioral intention pengguna QRIS.

References

Bailey, A. A., Pentina, I., Mishra, A. S., & Ben Mimoun, M. S. (2017). Mobile payments adoption by US consumers: an extended TAM. International Journal of Retail & Distribution Management, 45(6), 626-640.

Chen, K. Y., & Chang, M. L. (2013). User acceptance of ‘near field communication’mobile phone service: an investigation based on the ‘unified theory of acceptance and use of technology’model. The Service Industries Journal, 33(6), 609-623.

Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In Modern Methods for Business Research.

de Luna, I.R., Liebana-Cabanillas, F., Sánchez-Fernandez, J., & Munoz-Leiva, F. (2019). Mobile payment is not all the same: the adoption of mobile payment systems depending on the technology applied. Technology Forecast. Soc. Change 146, 931–944.

Gao, L., & Waechter, K. A. (2017). Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation. Information Systems Frontiers, 19, 525-548.

Hair, J.F., Sarstedt, M., Ringle, C.M., & Siegfried, G. P. (2019). Advanced Issues in Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications, Thousand Oaks, CA.

Humbani, M., & Wiese, M. (2018). A cashless society for all: determining consumers’ readiness to adopt mobile payment services. Jurnal African Business, 19 (3/4), 409–429.

Kalinic, Z., Marinkovic, V., Molinillo, S., & Liebana-Cabanillas, F. (2019). A multi-analitical approach to peer-to-peer mobile payment acceptance prediction. Journal Retailing and Consumer Services. 49 (1), 143-153.

Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in human behavior, 70, 460-474.

Lau, A. J., Tan, G. W. H., Loh, X. M., Leong, L. Y., Lee, V. H., & Ooi, K. B. (2021). On the way: Hailing a taxi with a smartphone? A hybrid SEM-neural network approach. Machine Learning with Applications, 4, 100034.

Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F. J. (2015). User behaviour in QR mobile payment system: the QR Payment Acceptance Model. Technology Analysis & Strategic Management, 27(9), 1031-1049.

Liébana-Cabanillas, F., Kalinic, Z., Luna, I. R. D., & Marinkovic, V. (2022). A holistic analysis of near field communication mobile payments: an empirical analysis. International Journal of Mobile Communications, 20(6), 703-726.

Ooi, K.B., & Tan, G.W.H. (2016). Mobile technology acceptance model: an investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59 (1), 33–46.

Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144.

Phonthanukitithaworn, C., Sellitto, C., & Fong, M. W. L. (2016). A comparative study of current and potential users of mobile payment services. SAGE Open, 6(4), 1–14. doi:10.1177/2158244016675397.

Qin, Z., Sun, J., Wahaballa, A., Zheng, W., Xiong, H., & Qin, Z. (2017). A secure and privacy-preserving mobile wallet with outsourced verification in cloud computing. Computer Standards & Interfaces, 54, 55-60.

RRI.co.id, (2023). ”Pengguna QRIS di Sumbar Meningkat, Nominal Transaksi Capai Rp 781 M”. diakses dari https://www.rri.co.id/sumatera-barat/keuangan, diakses tanggal 22 Desember 2023.

Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223.

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.

Thakur, R., & Srivastava, M. (2013). Customer usage intention of mobile commerce in India: an empirical study. Journal of Indian Business Research, 5(1), 52-72.

Tew, H. T., Tan, G. W. H., Loh, X. M., Lee, V. H., Lim, W. L., & Ooi, K. B. (2022). Tapping the next purchase: embracing the wave of mobile payment. Journal of Computer Information Systems, 62(3), 527-535.

Türker, C., Altay, B. C., & Okumu?, A. (2022). Understanding user acceptance of QR code mobile payment systems in Turkey: An extended TAM. Technological Forecasting and Social Change, 184, 121968.

To, A. T., & Trinh, T. H. M. (2021). Understanding behavioral intention to use mobile wallets in vietnam: Extending the tam model with trust and enjoyment. Cogent Business & Management, 8(1), 1891661.

Wang, L., & Dai, X. (2020). Exploring factors affecting the adoption of mobile payment at physical stores. International Journal of Mobile Communications, 18(1), 67-82.

Wetzels, M., Schroder, G. O., & Oppen, V. C. (2009). Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195.

Yan, L. Y., Tan, G. W. H., Loh, X. M., Hew, J. J., & Ooi, K. B. (2021). QR code and mobile payment: The disruptive forces in retail. Journal of Retailing and Consumer Services, 58, 102300.

Yang, Q., Gong, X., Zhang, K. Z., Liu, H., & Lee, M. K. (2020). Self-disclosure in mobile payment applications: Common and differential effects of personal and proxy control enhancing mechanisms. International Journal of Information Management. 102065.

Zhang, P. (2013). The affective response model: A theoretical framework of affective concepts and their relationships in the ICT context. MIS quarterly, 247-274.

Zhang, Y., & Mao, J. (2019). An overview of the development of antenna-in-package technology for highly integrated wireless devices. Proceedings of the IEEE, 107(11), 2265-2280.

Downloads

Published

2024-02-12

How to Cite

Saputra, Y. F. E., & Bahari, A. (2024). Analisis Determinan Dan Anteseden Penggunaan Quick Response Indonesian Standard (QRIS) Pada Pembayaran Digital. Management Studies and Entrepreneurship Journal (MSEJ), 5(1), 3026–3037. https://doi.org/10.37385/msej.v5i1.4428